
Galera Cluster Documentation
Releases 3.x and 4.x

Codership Oy

Jan 31, 2025

CONTENTS

1 Overview of Galera Cluster 5

2 Technical Description 9
2.1 Database Replication . 11
2.2 Certification-Based Replication . 14
2.3 Replication API . 16
2.4 Isolation Levels . 19
2.5 State Transfers . 22
2.6 Flow Control . 25
2.7 Node Failure & Recovery . 28
2.8 Quorum Components . 30
2.9 Streaming Replication . 35

3 Installing Galera Cluster 39
3.1 Galera Cluster for MySQL—Binary Installation . 41
3.2 Galera Cluster for MySQL - Source Installation . 46
3.3 MariaDB Galera Cluster - Binary Installation . 50
3.4 MariaDB Galera Cluster - Source Installation . 53
3.5 Percona XtraDB Cluster - Binary Installation . 57
3.6 Percona XtraDB Cluster - Source Installation . 60

4 Galera Cluster Administration 65
4.1 Node Provisioning . 68
4.2 State Snapshot Transfers . 70

4.2.1 Logical State Snapshot . 71
4.2.2 Physical State Snapshot . 74

4.3 Scriptable State Snapshot Transfers . 77
4.4 Galera System Tables . 80
4.5 Schema Upgrades . 85
4.6 Upgrading Galera Cluster . 89
4.7 Recovering Primary Component . 93
4.8 Resetting the Quorum . 96
4.9 Managing Flow Control . 99
4.10 Auto-Eviction . 103
4.11 Using Streaming Replication . 106
4.12 Galera Arbitrator . 108
4.13 Backing Up Cluster Data . 112

5 Deployment 115
5.1 Cluster Deployment Variants . 116

i

5.2 Load Balancing . 122
5.2.1 HAProxy . 123
5.2.2 Pen Load Balancer . 125
5.2.3 Galera Load Balancer (Galera Load Balancer binaries are part of Galera Cluster Enterprise

Edition) . 127
5.3 Container Deployments . 131

5.3.1 Using Docker . 132
5.3.2 Using Jails . 136

6 Cluster Monitoring 143
6.1 Using Status Variables . 144
6.2 Database Server Logs . 150
6.3 The Galera Manager . 152

6.3.1 Installing Galera Manager . 155
6.3.2 AWS Ports with Galera Manager . 162
6.3.3 Galera Manager End-User License Agreement (EULA) . 166
6.3.4 Galera Manager Daemon (gmd) . 168
6.3.5 Deploying a Cluster in Galera Manager . 172
6.3.6 Adding Nodes with Galera Manager . 180
6.3.7 Adding Users to Galera Manager . 187
6.3.8 Loading Initial Data . 190
6.3.9 Monitoring a Cluster with Galera Manager . 196
6.3.10 Upgrading Galera Manager (gmd) . 204

6.4 Notification Command . 206
6.5 Notification Script Example . 208

7 Security 213
7.1 Firewall Settings . 214

7.1.1 Firewall Configuration with iptables . 215
7.1.2 Firewall Configuration with FirewallD . 217
7.1.3 Firewall Configuration with PF . 219

7.2 SSL Settings . 221
7.2.1 SSL Certificates . 222
7.2.2 SSL Configuration . 224
7.2.3 SSL for State Snapshot Transfers . 227

7.3 SELinux Configuration . 231

8 Reference 235
8.1 MySQL wsrep Options . 237
8.2 Galera Functions . 273
8.3 Galera Parameters . 275

8.3.1 Setting Galera Parameters in MySQL . 311
8.4 Galera Status Variables . 312
8.5 XtraBackup-v2 Parameters . 337
8.6 Galera Load Balancer Parameters . 345
8.7 Versioning Information . 354
8.8 Legal Notice . 356
8.9 Glossary . 357

Index 361

ii

Galera Cluster Documentation, Releases 3.x and 4.x

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

This is the Codership Documentation. It documents the latest version of Galera Cluster, as well as related Galera
tools, such as the Galera Arbitrator. It also includes, at times, information on features available in upcoming versions
of Galera Cluster that haven’t been released yet. For such text, the new version number is noted.

Installation & Configuration

Database Replication (page 11) State Transfers (page 22)
Replication API (page 16) Flow Control (page 25)
Installing Galera Cluster (page 39) Node Failure & Recovery (page 28)
Certification-Based Replication (page 14) Quorum Components (page 30)
Isolation Levels (page 19) Streaming Replication (page 35)

Administration

Node Provisioning (page 68) Recovering Primary Component (page 93)
State Snapshot Transfers (page 70) Resetting the Quorum (page 96)
Scriptable State Snapshot Transfers (page 77) Managing Flow Control (page 99)
Galera System Tables (page 80) Auto-Eviction (page 103)
Schema Upgrades (page 85) Using Streaming Replication (page 106)
Upgrading Galera Cluster (page 89) Backing Up Cluster Data (page 112)
crash-recovery inconsistency-voting
utility-scripts

CONTENTS 1

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Deployment

Load Balancing (page 122) Cluster Deployment Variants (page 116)
Container Deployments (page 131) Galera Arbitrator (page 108)
ldap-plugin pam-plugin
keyring-plugin

Monitoring

Using Status Variables (page 144) Database Server Logs (page 150)
The Galera Manager (page 152) Security (page 213)
Notification Command (page 206) audit-log-plugin

Reference

MySQL wsrep Options (page 237) Galera Load Balancer Parameters (page 345)
Galera Functions (page 273) XtraBackup-v2 Parameters (page 337)
Galera Parameters (page 275) Galera System Tables (page 80)
Galera Status Variables (page 312) Versioning Information (page 354)
mariadb-options mariabackup-options

Miscellaneous

Glossary (page 357) Legal Notice (page 356)
genindex ../whats-new

For resolving problems you might have with the software, you can also check our Knowledge Base. There you will
find troubleshooting and best practices articles. You can also post questions on the Codership Forum. The community,
as well as our staff monitor and respond to posts made there.

If you need more immediate and personalized assistance, you can get a Support contract with us at Codership. For a
quote on the cost of support, write us at info@codership.com or use our on-line form to send us a message.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

2 CONTENTS

https://galeracluster.com/community/
mailto:info@codership.com
https://galeracluster.com/contact-us/#send-us-a-message
https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• Docs (page 1)

• KB

• Training

• FAQ

CONTENTS 3

Galera Cluster Documentation, Releases 3.x and 4.x

4 CONTENTS

CHAPTER

ONE

OVERVIEW OF GALERA CLUSTER

Galera Cluster is a synchronous multi-primary database cluster, based on synchronous replication and MySQL and
InnoDB. When Galera Cluster is in use, database reads and writes can be directed to any node. Any individual node
can be lost without interruption in operations and without using complex failover procedures.

At a high level, Galera Cluster consists of a database server (that is, MySQL or MariaDB) that uses the Galera
Replication Plugin to manage replication. To be more specific, the MySQL replication plugin API has been extended
to provide all the information and hooks required for true multi-primary, synchronous replication. This extended API
is called the Write-Set Replication API, or wsrep API.

Through the wsrep API, Galera Cluster provides certification-based replication. A transaction for replication, the
write-set not only contains the database rows to replicate, but also includes information on all of the locks that were
held by the database during the transaction. Each node then certifies the replicated write-set against other write-sets
in the applier queue. The write-set is then applied—if there are no conflicting locks. At this point, the transaction is
considered committed, after which each node continues to apply it to the tablespace.

This approach is also called virtually synchronous replication, given that while it is logically synchronous, the actual
writing and committing to the tablespace happens independently, and thus asynchronously on each node.

Benefits of Galera Cluster

Galera Cluster provides a significant improvement in high-availability for the MySQL system. The various ways to
achieve high-availability have typically provided only some of the features available through Galera Cluster, making
the choice of a high-availability solution an exercise in trade-offs.

The following features are available through Galera Cluster:

• True Multi-Primary

You can read and write to any node at any time. Changes to data on one node will be replicated on all.

• Synchronous Replication

There is no replica lag, so no data is lost if a node crashes.

• Tightly Coupled

All nodes hold the same state. There is no diverged data between nodes.

• Multi-Threaded Replica

This allows for better performance and for any workload.

5

https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

• No Primary-Replica Failover

There is no need for primary/replica operations or to use Virtual IPs (VIP).

• Hot Standby

There is no downtime related to failures or intentionally taking down a node for maintenance since there is no
failover.

• Automatic Node Provisioning

There’s no need to backup manually the database and copy it to the new node.

• Supports InnoDB.

The InnoDB storage engine provides for transactional tables.

• Transparent to Applications

Generally, you won’t have to change an application that will interface with the database as a result of Galera. If
you do, it will be minimal changes.

• No Read and Write Splitting Needed

There is no need to split read and write queries.

In summary, Galera Cluster is a high-availability solution that is both robust in terms of data integrity and provides
high-performance with instant failovers.

Cloud Implementations with Galera Cluster

An additional benefit of Galera Cluster is good cloud support. Automatic node provisioning makes elastic scale-out
and scale-in operations painless. Galera Cluster has been proven to perform extremely well in the cloud, such as when
using multiple small node instances, across multiple data centers—AWS zones, for example—or even over Wider
Area Networks.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Certification Replication (page 14)

• Database Replication (page 11)

• Flow Control (page 25)

• Isolation Levels (page 19)

• Node Recovery (page 28)

• Quorum Components (page 30)

6 Chapter 1. Overview of Galera Cluster

Galera Cluster Documentation, Releases 3.x and 4.x

• Replication Architecture (page 16)

• State Transfers (page 22)

• Streaming Replication (page 35)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

8 Chapter 1. Overview of Galera Cluster

CHAPTER

TWO

TECHNICAL DESCRIPTION

Galera Cluster is a synchronous certification-based replication solution for MySQL, MariaDB and Percona XtraDB.
Cluster nodes are identical and fully representative of the cluster state. They allow for unconstrained transparent client
access, acting as a single-distributed database server. In order to better understand Galera Cluster, this section provides
detailed information on how it works and how you can benefit from it.

Understanding Replication

Replication in the context of databases refers to the frequent copying of data from one database server to another.
These sections provide a high-level explanation of replication both in the general sense of how it works, as well as the
particulars of how Galera Cluster implements these core concepts.

• Database Replication (page 11)

This section explains how database replication works in general. It provides an overview of the problems
inherent in the various replication implementations, including primary-replica, asynchronous and synchronous
replication.

• Certification-Based Replication (page 14)

Using group communications and transaction ordering techniques, certification-based replication allows for
synchronous replication.

Understanding Galera Cluster

With a better grasp on how replication works, these pages provide a more detailed explanation of how Galera Cluster
implements certification-based replication, including the specific architecture of the nodes, how they communicate
with each other, as well as replicate data and manage the replication process.

• Replication API (page 16)

While the above sections explain the abstract concepts surrounding certification-based replication, this section
covers the specific architecture used by Galera Cluster in implementing write-set replication, including the wsrep
API and the Galera Replication and Group Communication plug-ins.

• Isolation Levels (page 19)

In a database system, the server will process concurrent transactions in isolation from each other. The level of
isolation determines whether and how these transactions affect one another. This section provides an overview
of the isolation levels supported by Galera Cluster.

• State Transfers (page 22)

The actual process that nodes use to replicate data into each other is called provisioning. Galera Cluster supports
two provisioning methods: State Snapshot Transfers and Incremental State Transfers. This section presents an
overview of each.

9

Galera Cluster Documentation, Releases 3.x and 4.x

• Flow Control (page 25)

Galera Cluster manages the replication process using a feedback mechanism called Flow Control. This allows
the node to pause and resume replication according to its performance needs and to prevent any node from
lagging too far behind the others in applying transaction. This section provides an overview of Flow Control
and the different states nodes can hold.

• Node Failure & Recovery (page 28)

Nodes fail to operate when they lose their connection with the cluster. This can occur for various reasons, such
as hardware failures, software crashes, or the loss of network connectivity. This section provides an overview of
how nodes and the cluster cope with failure and how they may recover.

• Quorum Components (page 30)

When nodes connect to each other, they form components. The Primary Component is a component that has
Quorum: it carries the majority of nodes in the cluster. By default, each node represents one vote in quorum
calculations. However, you can modify this feature in order to ensure certain stable nodes with strong connec-
tions carry a greater value. This section provides an overview of how Galera Cluster handles weighted values in
quorum calculations.

• Streaming Replication (page 35)

Normally, nodes transfer all replication and certification events on the transaction commit. With Streaming
Replication, the nodes break the transaction into fragments. Then they certify, replicate and apply these repli-
cation fragments onto the replica nodes. This section describes Streaming Replication, how it works and the
limitations of its use.

Related Documents

• Certification Replication (page 14)

• Database Replication (page 11)

• Flow Control (page 25)

• Isolation Levels (page 19)

• Node Recovery (page 28)

• Quorum Components (page 30)

• Replication Architecture (page 16)

• State Transfers (page 22)

• Streaming Replication (page 35)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

10 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

• Certification Replication (page 14)

• Database Replication (page 11)

• Flow Control (page 25)

• Isolation Levels (page 19)

• Node Recovery (page 28)

• Quorum Components (page 30)

• Replicaiton Architecture (page 16)

• State Transfers (page 22)

• Streaming Replication (page 35)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.1 Database Replication

Database replication refers to the frequent copying of data from one node—a database on a server—into another.
Think of a database replication system as a distributed database, where all nodes share the same level of information.
This system is also known as a database cluster.

The database clients, such as web browsers or computer applications, do not see the database replication system, but
they benefit from close to native DBMS (Database Management System) behavior.

Primaries and Replicas

Many DATABASE MANAGEMENT SYSTEMS (DBMS) replicate the database.

The most common replication setup uses a primary/replica relationship between the original data set and the copies.

In this system, the primary database server logs the updates to the data and propagates those logs through the network
to the replicas. The replica database servers receive a stream of updates from the primary and apply those changes.

Another common replication setup uses multi-primary replication, where all nodes function as primaries.

In a multi-primary replication system, you can submit updates to any database node. These updates then propagate
through the network to other database nodes. All database nodes function as primaries. There are no logs available
and the system provides no indicators sent to tell you if the updates were successful.

2.1. Database Replication 11

https://galeracluster.com
https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 1: Primary/Primary Replication

Fig. 2: Multi-primary Replication

12 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

Asynchronous and Synchronous Replication

In addition to the setup of how different nodes relate to one another, there is also the protocol for how they propagate
database transactions through the cluster.

• Synchronous Replication Uses the approach of eager replication. Nodes keep all replicas synchronized by
updating all replicas in a single transaction. In other words, when a transaction commits, all nodes have the
same value.

• Asynchronous Replication Uses the approach of lazy replication. The primary database asynchronously prop-
agates replica updates to other nodes. After the primary node propagates the replica, the transaction commits.
In other words, when a transaction commits, for at least a short time, some nodes hold different values.

Advantages of Synchronous Replication

In theory, there are several advantages that synchronous replication has over asynchronous replication. For instance:

• High Availability Synchronous replication provides highly available clusters and guarantees 24/7 service avail-
ability, given that:

– No data loss when nodes crash.

– Data replicas remain consistent.

– No complex, time-consuming failovers.

• Improved Performance Synchronous replications allows you to execute transactions on all nodes in the cluster
in parallel to each other, increasing performance.

• Causality across the Cluster Synchronous replication guarantees causality across the whole cluster. For exam-
ple, a SELECT query issued after a transaction always sees the effects of the transaction, even if it were executed
on another node.

Disadvantages of Synchronous Replication

Traditionally, eager replication protocols coordinate nodes one operation at a time. They use a two phase commit, or
distributed locking. A system with 𝑛 number of nodes due to process 𝑜 operations with a throughput of 𝑡 transactions
per second gives you 𝑚 messages per second with:

𝑚 = 𝑛× 𝑜× 𝑡

What this means that any increase in the number of nodes leads to an exponential growth in the transaction response
times and in the probability of conflicts and deadlock rates.

For this reason, asynchronous replication remains the dominant replication protocol for database performance, scal-
ability and availability. Widely adopted open source databases, such as MySQL and PostgreSQL only provide asyn-
chronous replication solutions.

Solving the Issues in Synchronous Replication

There are several issues with the traditional approach to synchronous replication systems. Over the past few years,
researchers from around the world have begun to suggest alternative approaches to synchronous database replication.

In addition to theory, several prototype implementations have shown much promise. These are some of the most
important improvements that these studies have brought about:

• Group Communication This is a high-level abstraction that defines patterns for the communication of database
nodes. The implementation guarantees the consistency of replication data.

2.1. Database Replication 13

Galera Cluster Documentation, Releases 3.x and 4.x

• Write-sets This bundles database writes in a single write-set message. The implementation avoids the coordi-
nation of nodes one operation at a time.

• Database State Machine This processes read-only transactions locally on a database site. The implementation
updates transactions are first executed locally on a database site, on shallow copies, and then broadcast as a
read-set to the other database sites for certification and possibly commits.

• Transaction Reordering This reorders transactions before the database site commits and broadcasts them to
the other database sites. The implementation increases the number of transactions that successfully pass the
certification test.

The certification-based replication system that Galera Cluster uses is built on these approaches.

Related Documents

• Certification Replication (page 14)

• Database Replication (page 11)

• Flow Control (page 25)

• Isolation Levels (page 19)

• Node Recovery (page 28)

• Quorum Components (page 30)

• Replicaiton Architecture (page 16)

• State Transfers (page 22)

• Streaming Replication (page 35)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.2 Certification-Based Replication

Certification-based replication uses group communication and transaction ordering techniques to achieve synchronous
replication.

14 Chapter 2. Technical Description

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Transactions execute optimistically in a single node, or replica, and then at commit time, they run a coordinated
certification process to enforce global consistency. It achieves global coordination with the help of a broadcast service
that establishes a global total order among concurrent transactions.

Certification-Based Replication Requirements

It is not possible to implement certification-based replication for all database systems. It requires certain features of
the database in order to work;

• Transactional Database: The database must be transactional. Specifically, it has to be able to rollback uncom-
mitted changes.

• Atomic Changes: Replication events must be able to change the database, atomically. All of a series of database
operations in a transaction must occur, else nothing occurs.

• Global Ordering: Replication events must be ordered globally. Specifically, they are applied on all instances
in the same order.

How Certification-Based Replication Works

The main idea in certification-based replication is that a transaction executes conventionally until it reaches the commit
point, assuming there is no conflict. This is called optimistic execution.

Fig. 3: Certification Based Replication

When the client issues a COMMIT command, but before the actual commit occurs, all changes made to the database
by the transaction and primary keys of the changed rows, are collected into a write-set. The database then sends this
write-set to all of the other nodes.

2.2. Certification-Based Replication 15

Galera Cluster Documentation, Releases 3.x and 4.x

The write-set then undergoes a deterministic certification test, using the primary keys. This is done on each node in the
cluster, including the node that originates the write-set. It determines whether or not the node can apply the write-set.

If the certification test fails, the node drops the write-set and the cluster rolls back the original transaction. If the test
succeeds, though, the transaction commits and the write-set is applied to the rest of the cluster.

Certification-Based Replication in Galera Cluster

The implementation of certification-based replication in Galera Cluster depends on the global ordering of transactions.

Galera Cluster assigns each transaction a global ordinal sequence number, or seqno, during replication. When a
transaction reaches the commit point, the node checks the sequence number against that of the last successful trans-
action. The interval between the two is the area of concern, given that transactions that occur within this interval
have not seen the effects of each other. All transactions in this interval are checked for primary key conflicts with the
transaction in question. The certification test fails if it detects a conflict.

The procedure is deterministic and all replica receive transactions in the same order. Thus, all nodes reach the same de-
cision about the outcome of the transaction. The node that started the transaction can then notify the client application
whether or not it has committed the transaction.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.3 Replication API

Synchronous replication systems generally use eager replication. Nodes in a cluster will synchronize with all of the
other nodes by updating the replicas through a single transaction. This means that when a transaction commits, all of
the nodes will have the same value. This process takes place using write-set replication through group communication.

The internal architecture of Galera Cluster revolves around four components:

• Database Management System (DBMS): The database server that runs on an individual node. Galera Cluster
can use MySQL, MariaDB or Percona XtraDB.

• wsrep API: This is the interface to the database server and it is the replication provider. It consists of two main
elements:

16 Chapter 2. Technical Description

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 4: Replication API

2.3. Replication API 17

Galera Cluster Documentation, Releases 3.x and 4.x

• wsrep Hooks: This integrates with the database server engine for write-set replication.

• dlopen(): This function makes the wsrep provider available to the wsrep hooks.

• Galera Replication Plugin: This plugin enables write-set replication service functionality.

wsrep API

The wsrep API is a generic replication plugin interface for databases. It defines a set of application callbacks and
replication plugin calls.

The wsrep API uses a replication model that considers the database server to have a state. That state refers to the
contents of the database. When a database is in use and clients modify the database content, its state is changed. The
wsrep API represents changes in the database state as a series of atomic changes, or transactions.

In a database cluster, all of the nodes always have the same state. They synchronize with each other by replicating and
applying state changes in the same serial order.

From a more technical perspective, Galera Cluster handles state changes in the following way:

• On one node in the cluster, a state change occurs in the database.

• In the database, the wsrep hooks translate the changes to the write-set.

• dlopen() then makes the wsrep provider functions available to the wsrep hooks.

• The Galera Replication plugin handles write-set certification and replication to the cluster.

For each node in the cluster, the application process occurs by high-priority transactions.

Global Transaction ID

In order to keep the state identical across the cluster, the wsrep API uses a Global Transaction ID, or GTID. This
allows it to identify state changes and to identify the current state in relation to the last state change. Below is an
example of a GTID:

45eec521-2f34-11e0-0800-2a36050b826b:94530586304

The Global Transaction ID consists of the following components:

• State UUID This is a unique identifier for the state and the sequence of changes it undergoes.

• Ordinal Sequence Number: The seqno is a 64-bit signed integer used to denote the position of the change in
the sequence.

The Global Transaction ID allows you to compare the application state and establish the order of state changes. You
can use it to determine whether or not a change was applied and whether the change is applicable to a given state.

Galera Replication Plugin

The Galera Replication Plugin implements the wsrep API. It operates as the wsrep Provider. From a more technical
perspective, the Galera Replication Plugin consists of the following components:

• Certification Layer: This layer prepares the write-sets and performs the certification checks on them, ensuring
that they can be applied.

• Replication Layer: This layer manages the replication protocol and provides the total ordering capability.

• Group Communication Framework: This layer provides a plugin architecture for the various group commu-
nication systems that connect to Galera Cluster.

18 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

Group Communication Plugins

The Group Communication Framework provides a plugin architecture for the various gcomm systems.

Galera Cluster is built on top of a proprietary group communication system layer, which implements a virtual syn-
chrony QOS (Quality of Service). Virtual synchrony unifies the data delivery and cluster membership services, pro-
viding clear formalism for message delivery semantics.

While virtual synchrony guarantees consistency, it does not guarantee temporal synchrony, which is necessary for
smooth multi-primary operations. To address this, Galera Cluster implements its own runtime-configurable temporal
flow control. Flow control keeps nodes synchronized to a fraction of a second.

Group Communication Framework also provides a total ordering of messages from multiple sources. It uses this to
generate Global Transaction ID’s in a multi-primary cluster.

At the transport level, Galera Cluster is a symmetric undirected graph. All database nodes connect to each other over
a TCP (Transmission Control Protocol) connection. By default, TCP is used for both message replication and the
cluster membership services. However, you can also use UDP (User Datagram Protocol) multicast for replication in a
LAN (Local Area Network).

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• READ-COMMITTED (page 20)

• READ-UNCOMMITTED (page 20)

• REPEATABLE-READ (page 20)

• SERIALIZABLE (page 21)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.4 Isolation Levels

In a database system, concurrent transactions are processed in “isolation” from each other. The level of isolation
determines how transactions can affect each other.

2.4. Isolation Levels 19

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Intra-Node vs. Inter-Node Isolation in Galera Cluster

Before going into details about possible isolation levels which can be set for a client session in Galera Cluster it is
important to make a distinction between single node and global cluster transaction isolation. Individual cluster nodes
can provide any isolation level to the extent it is supported by MySQL/InnoDB. However isolation level between the
nodes in the cluster is affected by replication protocol, so transactions issued on different nodes may not be isolated
identically to transactions issued on the same node.

Overall isolation levels that are supported cluster-wide are

• READ-UNCOMMITTED (page 20)

• READ-COMMITTED (page 20)

• REPEATABLE-READ (page 20)

For transactions issued on different nodes, isolation is also strengthened by the “first committer wins” rule, which
eliminates the “lost update anomaly” inherent to these levels, whereas for transactions issued on the same node this
rule does not hold (as per original MySQL/InnoDB behavior). This makes for different outcomes depending on
transaction origin (transaction issued on the same node may succeed, whereas the same transaction issued on another
node would fail), but in either case it is no weaker than that isolation level on a standalone MySQL/InnoDB.

SERIALIZABLE (page 21) isolation level is honored only between transactions issued on the same node and thus
should be avoided.

Data consistency between the nodes is always guaranteed regardless of the isolation level chosen by the client. How-
ever the client logic may break if it relies on an isolation level which is not not supported in the given configuration.

Understanding Isolation Levels

Warning: When using Galera Cluster in primary-replica mode, all four levels are available to you, to the extent
that MySQL supports it. In multi-primary mode, however, you can only use the REPEATABLE-READ level.

READ-UNCOMMITTED

Here transactions can see changes to data made by other transactions that are not yet committed.

In other words, transactions can read data that eventually may not exist, given that other transactions can always
rollback the changes without commit. This is known as a dirty read. Effectively, READ-UNCOMMITTED has no real
isolation at all.

READ-COMMITTED

Here dirty reads are not possible. Uncommitted changes remain invisible to other transactions until the transaction
commits.

However, at this isolation level SELECT queries use their own snapshots of committed data, that is data committed be-
fore the SELECT query executed. As a result, SELECT queries, when run multiple times within the same transaction,
can return different result sets. This is called a non-repeatable read.

REPEATABLE-READ

Here non-repeatable reads are not possible. Snapshots taken for the SELECT query are taken the first time the SELECT
query runs during the transaction.

20 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

The snapshot remains in use throughout the entire transaction for the SELECT query. It always returns the same result
set. This level does not take into account changes to data made by other transactions, regardless of whether or not they
have been committed. In this way, reads remain repeatable.

SERIALIZABLE

Here all records accessed within a transaction are locked. The resource locks in a way that also prevents you from
appending records to the table the transaction operates upon.

SERIALIZABLE prevents a phenomenon known as a phantom read. Phantom reads occur when, within a transaction,
two identical queries execute, and the rows the second query returns differ from the first.

Related Documents

• READ-COMMITTED (page 20)

• READ-UNCOMMITTED (page 20)

• REPEATABLE-READ (page 20)

• SERIALIZABLE (page 21)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Galera Parameters (page 275)

• gcache.dir (page 291)

• gcache.recover (page 293)

• Incremental St. Transfr. (page 22)

• State Snapshot Transfers (page 70)

• State Snap. Transfr. (page 22)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.4. Isolation Levels 21

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

2.5 State Transfers

The process of replicating data from the cluster to the individual node, bringing the node into sync with the cluster, is
known as provisioning. There are two methods available in Galera Cluster to provision nodes:

• State Snapshot Transfers (SST) (page 22), where a snapshot of the entire node state transfers.

• Incremental State Transfers (IST) (page 22), where only the missing transactions transfer.

State Snapshot Transfer (SST)

In a State Snapshot Transfer (SST), the cluster provisions nodes by transferring a full data copy from one node to
another. When a new node joins the cluster, the new node initiates a State Snapshot Transfer to synchronize its data
with a node that is already part of the cluster.

You can choose from two conceptually different approaches in Galera Cluster to transfer a state from one database to
another:

• Logical This method uses mysqldump. It requires that you fully initialize the receiving server and ready it to
accept connections before the transfer.

This is a blocking method. The Donor Node becomes READ-ONLY for the duration of the transfer. The State
Snapshot Transfer applies the FLUSH TABLES WITH READ LOCK command on the donor node.

mysqldump is the slowest method for State Snapshot Transfers. This can be an issue in a loaded cluster.

• Physical This method uses rsync, rsync_wan, xtrabackup and other methods, and copies the data files
directly from server to server. It requires that you initialize the receiving server after the transfer.

These methods are faster than mysqldump, but they have certain limitations. You can only use them on
server startup. The receiving server requires very similar configurations to the donor, (for example, both servers
must use the same innodb_file_per_table value. See innodb_file_per_table for version 8.0 or inn-
odb_file_per_table for version 8.4.

Some of these methods, such as xtrabackup, can be made non-blocking on the donor. They are supported
through a scriptable SST interface.

For more information on the particular methods available for State Snapshot Transfers, see State Snapshot Transfers
(page 70).

You can set which State Snapshot Transfer method a node uses from the confirmation file. For example:

wsrep_sst_method=rsync_wan

Incremental State Transfer (IST)

In an Incremental State Transfer (IST), the cluster provisions a node by identifying the missing transactions on the
joiner and sends them only, instead of the entire state.

This provisioning method is only available under certain conditions:

• Where the Joiner Node state UUID is the same as that of the group.

• Where all missing write-sets are available in the donor’s write-set cache.

When these conditions are met, the donor node transfers the missing transactions alone, replaying them in order until
the joiner catches up with the cluster.

For example, say that you have a node in your cluster that falls behind the cluster. This node carries a node state that
reads:

22 Chapter 2. Technical Description

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/8.4/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/8.4/en/innodb-parameters.html#sysvar_innodb_file_per_table

Galera Cluster Documentation, Releases 3.x and 4.x

5a76ef62-30ec-11e1-0800-dba504cf2aab:197222

Meanwhile, the current node state on the cluster reads:

5a76ef62-30ec-11e1-0800-dba504cf2aab:201913

The donor node on the cluster receives the state transfer request from the joiner node. It checks its write-set cache for
the sequence number 197223. If that seqno is not available in the write-set cache, a State Snapshot Transfer initiates.
If that seqno is available in the write-set cache, the donor node sends the commits from 197223 through to 201913
to the joiner, instead of the full state.

The advantage of Incremental State Transfers is that they can dramatically speed up the reemerging of a node to the
cluster. Additionally, the process is non-blocking on the donor.

Note: The most important parameter for Incremental State Transfers is gcache.size on the donor node. This
controls how much space you allocate in system memory for caching write-sets. The more space available the more
write-sets you can store. The more write-sets you can store the wider the seqno gaps you can close through Incremental
State Transfers.

On the other hand, if the write-set cache is much larger than the size of your database state, Incremental State Transfers
become less efficient than sending a state snapshot.

Write-set Cache (GCache)

Galera Cluster stores write-sets in a special cache called the Write-set Cache, or GCache. GCache cache is a memory
allocator for write-sets. Its primary purpose is to minimize the write-set footprint on the RAM (Random Access
Memory). Galera Cluster improves upon this through the offload write-set storage to disk.

GCache employs three types of storage:

• Permanent In-Memory Store Here write-sets allocate using the default memory allocator for the operating
system. This is useful in systems that have spare RAM. The store has a hard size limit.

By default it is disabled.

• Permanent Ring-Buffer File Here write-sets pre-allocate to disk during cache initialization. This is intended
as the main write-set store.

By default, its size is 128 Mb.

• On-Demand Page Store Here write-sets allocate to memory-mapped page files during runtime as necessary.

By default, its size is 128 Mb, but can be larger if it needs to store a larger write-set. The size of the page store
is limited by the free disk space. By default, Galera Cluster deletes page files when not in use, but you can set a
limit on the total size of the page files to keep.

When all other stores are disabled, at least one page file remains present on disk.

For more information on parameters that control write-set caching, see the gcache.* parameters on Galera Param-
eters (page 275).

Galera Cluster uses an allocation algorithm that attempts to store write-sets in the above order. That is, first it attempts
to use permanent in-memory store. If there is not enough space for the write-set, it attempts to store to the permanent
ring-buffer file. The page store always succeeds, unless the write-set is larger than the available disk space.

By default, the write-set cache allocates files in the working directory of the process. You can specify a dedicated
location for write-set caching, using the gcache.dir (page 291) parameter.

2.5. State Transfers 23

Galera Cluster Documentation, Releases 3.x and 4.x

Note: Given that all cache files are memory-mapped, the write-set caching process may appear to use more memory
than it actually does.

Note: If the gcache.recover (page 293) parameter is set to yes, an attempt to recover the gcache will be performed
on startup, so that the node may continue to serve IST to other nodes. If set to no, gcache will be invalidated on startup
and the node will only be able to serve SST.

Related Documents

• Galera Parameters (page 275)

• gcache.dir (page 291)

• gcache.recover (page 293)

• Incremental St. Transfr. (page 22)

• State Snapshot Transfers (page 70)

• State Snap. Transfr. (page 22)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Catching Up (page 26)

• Cluster Sync (page 26)

• gcs.fc_factor (page 294)

• gcs.fc_limit (page 295)

• gcs.max_throttle (page 296)

• gcs.recv_q_hard_limit (page 296)

• gcs.recv_q_soft_limit (page 296)

• No Flow Control (page 25)

• Write-set Caching (page 25)

• wsrep_ready (page 333)

• Home

• Docs (page 1)

24 Chapter 2. Technical Description

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• KB

• Training

• FAQ

2.6 Flow Control

Galera Cluster manages the replication process using a feedback mechanism, called Flow Control. Flow Control
allows a node to pause and resume replication according to its needs. This prevents any node from lagging too far
behind the others in applying transactions.

How Flow Control Works

Galera Cluster achieves synchronous replication by ensuring that transactions copy to all nodes an execute according
to a cluster-wide ordering. That said, the transaction applies and commits occur asynchronously as they replicate
through the cluster.

Nodes receive write-sets and organize them into the global ordering. Transactions that the node receives from the
cluster but which it has not applied and committed, are kept in the received queue.

When the received queue reaches a certain size the node triggers Flow Control. The node pauses replication, then
works through the received queue. When it reduces the received queue to a more manageable size, the node resumes
replication.

Understanding Node States

Galera Cluster implements several forms of Flow Control, depending on the node state. This ensures temporal syn-
chrony and consistency—as opposed to logical, which virtual synchrony provides.

There are four primary kinds of Flow Control:

• No Flow Control (page 25)

• Write-set Caching (page 25)

• Catching Up (page 26)

• Cluster Sync (page 26)

No Flow Control

This Flow Control takes effect when nodes are in the OPEN or PRIMARY states.

When nodes hold these states, they are not considered part of the cluster. These nodes are not allowed to replicate,
apply or cache any write-sets.

Write-set Caching

This Flow Control takes effect when nodes are in the JOINER and DONOR states.

Nodes cannot apply any write-sets while in this state and must cache them for later. There is no reasonable way to
keep the node synchronized with the cluster, except for stopping all replication.

It is possible to limit the replication rate, ensuring that the write-set cache does not exceed the configured size. You
can control the write-set cache with the following parameters:

2.6. Flow Control 25

Galera Cluster Documentation, Releases 3.x and 4.x

• gcs.recv_q_hard_limit (page 296) Maximum write-set cache size (in bytes).

• gcs.max_throttle (page 296) Smallest fraction to the normal replication rate the node can tolerate in the cluster.

• gcs.recv_q_soft_limit (page 296) Estimate of the average replication rate for the node.

Catching Up

This Flow Control takes effect when nodes are in the JOINED state.

Nodes in this state can apply write-sets. Flow Control here ensures that the node can eventually catch up with the
cluster. It specifically ensures that its write-set cache never grows. Because of this, the cluster wide replication rate
remains limited by the rate at which a node in this state can apply write-sets. Since applying write-sets is usually
several times faster than processing a transaction, nodes in this state hardly ever effect cluster performance.

The one occasion when nodes in the JOINED state do effect cluster performance is at the very beginning, when the
buffer pool on the node in question is empty.

Note: You can significantly speed this up with parallel applying.

Cluster Sync

This Flow Control takes effect when nodes are in the SYNCED state.

When nodes enter this state Flow Control attempts to keep the replica queue to a minimum. You can configure how
the node handles this using the following parameters:

• gcs.fc_limit (page 295) Used to determine the point where Flow Control engages.

• gcs.fc_factor (page 294) Used to determine the point where Flow Control disengages.

Changes in the Node State

The node state machine handles different state changes on different layers of Galera Cluster. These are the node state
changes that occur at the top most layer:

1. The node starts and establishes a connection to the Primary Component.

2. When the node succeeds with a state transfer request, it begins to cache write-sets.

3. The node receives a State Snapshot Transfer. It now has all cluster data and begins to apply the cached write-sets.

Here the node enables Flow Control to ensure an eventual decrease in the replica queue.

4. The node finishes catching up with the cluster. Its replica queue is now empty and it enables Flow Control to
keep it empty.

The node sets the MySQL status variable wsrep_ready (page 333) to the value 1. The node is now allowed to
process transactions.

5. The node receives a state transfer request. Flow Control relaxes to DONOR. The node caches all write-sets it
cannot apply.

6. The node completes the state transfer to Joiner Node.

For the sake of legibility, certain transitions were omitted from the above description. Bear in mind the following
points:

26 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 5: Galera Cluster Node State Changes

• Connectivity Cluster configuration change events can send a node in any state to PRIMARY or OPEN. For
instance, a node that is SYNCED reverts to OPEN when it loses its connection to the Primary Component due to
network partition.

• Missing Transitions In the event that the joining node does not require a state transfer, the node state changes
from the PRIMARY state directly to the JOINED state.

For more information on Flow Control see Galera Flow Control in Percona XtraDB Cluster.

Related Documents

• Catching Up (page 26)

• Cluster Sync (page 26)

• gcs.fc_factor (page 294)

• gcs.fc_limit (page 295)

• gcs.max_throttle (page 296)

• gcs.recv_q_hard_limit (page 296)

• gcs.recv_q_soft_limit (page 296)

• No Flow Control (page 25)

• Write-set Caching (page 25)

• wsrep_ready (page 333)

The Library

• Documentation (page 1)

• Knowledge Base

2.6. Flow Control 27

https://www.mysqlperformanceblog.com/2013/05/02/galera-flow-control-in-percona-xtradb-cluster-for-mysql/

Galera Cluster Documentation, Releases 3.x and 4.x

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• evs.consensus_timeout (page 285)

• evs.inactive_check_period (page 287)

• evs.inactive_timeout (page 287)

• evs.keepalive_period (page 289)

• evs.suspect_timeout (page 290)

• Monitoring the Cluster (page 144)

• Notification Command (page 206)

• wsrep_local_state (page 330)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.7 Node Failure & Recovery

Individual nodes fail to operate when they lose touch with the cluster. This can occur due to various reasons. For
instance, in the event of hardware failure or software crash, the loss of network connectivity or the failure of a state
transfer. Anything that prevents the node from communicating with the cluster is generalized behind the concept of
node failure. Understanding how nodes fail will help in planning for their recovery.

Detecting Single Node Failures

When a node fails the only sign is the loss of connection to the node processes as seen by other nodes. Thus nodes are
considered failed when they lose membership with the cluster’s Primary Component. That is, from the perspective of
the cluster when the nodes that form the Primary Component can no longer see the node, that node is failed. From
the perspective of the failed node itself, assuming that it has not crashed, it has lost its connection with the Primary
Component.

Although there are third-party tools for monitoring nodes—such as ping, Heartbeat, and Pacemaker—they can be
grossly off in their estimates on node failures. These utilities do not participate in the Galera Cluster group communi-
cations and remain unaware of the Primary Component.

If you want to monitor the Galera Cluster node status poll the wsrep_local_state (page 330) status variable or through
the Notification Command (page 206).

For more information on monitoring the state of cluster nodes, see the chapter on Monitoring the Cluster (page 144).

28 Chapter 2. Technical Description

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

The cluster determines node connectivity from the last time it received a network packet from the node. You can
configure how often the cluster checks this using the evs.inactive_check_period (page 287) parameter. During the
check, if the cluster finds that the time since the last time it received a network packet from the node is greater than the
value of the evs.keepalive_period (page 289) parameter, it begins to emit heartbeat beacons. If the cluster continues to
receive no network packets from the node for the period of the evs.suspect_timeout (page 290) parameter, the node is
declared suspect. Once all members of the Primary Component see the node as suspect, it is declared inactive—that
is, failed.

If no messages were received from the node for a period greater than the evs.inactive_timeout (page 287) period, the
node is declared failed regardless of the consensus. The failed node remains non-operational until all members agree
on its membership. If the members cannot reach consensus on the liveness of a node, the network is too unstable for
cluster operations.

The relationship between these option values is:

evs.keepalive_period (page 289) <= evs.inactive_check_period (page 287)
evs.inactive_check_period (page 287) <= evs.suspect_timeout (page 290)
evs.suspect_timeout (page 290) <= evs.inactive_timeout (page 287)
evs.inactive_timeout (page 287) <= evs.consensus_timeout (page 285)

Note: Unresponsive nodes that fail to send messages or heartbeat beacons on time—for instance, in the event of
heavy swapping—may also be pronounced failed. This prevents them from locking up the operations of the rest of the
cluster. If you find this behavior undesirable, increase the timeout parameters.

Cluster Availability vs. Partition Tolerance

Within the CAP theorem, Galera Cluster emphasizes data safety and consistency. This leads to a trade-off between
cluster availability and partition tolerance. That is, when using unstable networks, such as WAN (Wide Area Net-
work), low evs.suspect_timeout (page 290) and evs.inactive_timeout (page 287) values may result in false node failure
detections, while higher values on these parameters may result in longer availability outages in the event of actual
node failures.

Essentially what this means is that the evs.suspect_timeout (page 290) parameter defines the minimum time needed to
detect a failed node. During this period, the cluster is unavailable due to the consistency constraint.

Recovering from Single Node Failures

If one node in the cluster fails, the other nodes continue to operate as usual. When the failed node comes back online,
it automatically synchronizes with the other nodes before it is allowed back into the cluster.

No data is lost in single node failures.

State Transfer Failure

Single node failures can also occur when a state snapshot transfer fails. This failure renders the receiving node
unusable, as the receiving node aborts when it detects a state transfer failure.

2.7. Node Failure & Recovery 29

https://en.wikipedia.org/wiki/CAP_theorem
https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

When the node fails while using mysqldump, restarting may require you to manually restore the administrative
tables. For the rsync method in state transfers this is not an issue, given that it does not require the database server
to be in an operational state to work.

Related Documents

• evs.consensus_timeout (page 285)

• evs.inactive_check_period (page 287)

• evs.inactive_timeout (page 287)

• evs.keepalive_period (page 289)

• evs.suspect_timeout (page 290)

• Monitoring the Cluster (page 144)

• Notification Command (page 206)

• wsrep_local_state (page 330)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• evs.suspect_timeout (page 290)

• Galera Arbitrator (page 108)

• pc.weight (page 304)

• Reset Quorum (page 96)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.8 Quorum Components

In addition to single node failures, the cluster may split into several components due to network failure. A component
is a set of nodes that are connected to each other, but not to the nodes that form other components. In these situations,
only one component can continue to modify the database state to avoid history divergence. This component is called
the Primary Component.

30 Chapter 2. Technical Description

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Under normal operations, your Primary Component is the cluster. When cluster partitioning occurs, Galera Cluster
invokes a special Quorum algorithm to select one component as the Primary Component. This guarantees that there is
never more than one Primary Component in the cluster.

Note: In addition to the individual node, quorum calculations also take into account a separate process called garbd.
For more information on its configuration and use, see Galera Arbitrator (page 108).

Weighted Quorum

The current number of nodes in the cluster defines the current cluster size. There is no configuration setting that allows
you to define the list of all possible cluster nodes. Every time a node joins the cluster, the total cluster size increases.
When a node leaves the cluster, gracefully, the cluster size decreases. Cluster size determines the number of votes
required to achieve quorum.

Galera Cluster takes a quorum vote whenever a node does not respond and is suspected of no longer being a part of the
cluster. You can fine tune this no response timeout using the evs.suspect_timeout (page 290) parameter. The default
setting is 5 seconds.

When the cluster takes a quorum vote, if the majority of the total nodes connected from before the disconnect remain,
that partition stays up. When network partitions occur, there are nodes active on both sides of the disconnect. The
component that has quorum alone continues to operate as the Primary Component, while those without quorum enter
the non-primary state and begin attempt to connect with the Primary Component.

Quorum requires a majority, meaning that you cannot have automatic failover in a two node cluster. This is because
the failure of one causes the remaining node automatically go into a non-primary state.

2.8. Quorum Components 31

https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

Clusters that have an even number of nodes risk split-brain conditions. If should you lose network connectivity
somewhere between the partitions in a way that causes the number of nodes to split exactly in half, neither partition
can retain quorum and both enter a non-primary state.

In order to enable automatic failovers, you need to use at least three nodes. Bear in mind that this scales out to other
levels of infrastructure, for the same reasons.

• Single switch clusters should use a minimum of 3 nodes.

• Clusters spanning switches should use a minimum of 3 switches.

• Clusters spanning networks should use a minimum of 3 networks.

• Clusters spanning data centers should use a minimum of 3 data centers.

Split-Brain Condition

Cluster failures that result in database nodes operating autonomous of each other are called split-brain conditions.
When this occurs, data can become irreparably corrupted, such as would occur when two database nodes independently
update the same row on the same table. As is the case with any quorum-based system, Galera Cluster is subject to
split-brain conditions when the quorum algorithm fails to select a Primary Component.

For example, this can occur if you have a cluster without a backup switch in the event that the main switch fails. Or,
when a single node fails in a two node cluster.

By design, Galera Cluster avoids split-brain condition. In the event that a failure results in splitting the cluster into two
partitions of equal size, (unless you explicitly configure it otherwise), neither partition becomes a Primary Component.

To minimize the risk of this happening in clusters that do have an even number of nodes, partition the cluster in a way
that one component always forms the Primary Cluster section.

4 node cluster -> 3 (Primary) + 1 (Non-primary)
6 node cluster -> 4 (Primary) + 2 (Non-primary)
6 node cluster -> 5 (Primary) + 1 (Non-primary)

32 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

In these partitioning examples, it is very difficult for any outage or failure to cause the nodes to split exactly in half.

For more information on configuring and managing the quorum, see Resetting the Quorum (page 96).

Quorum Calculation

Galera Cluster supports a weighted quorum, where each node can be assigned a weight in the 0 to 255 range, with
which it will participate in quorum calculations.

The quorum calculation formula is ∑︀
𝑝𝑖×𝑤𝑖

−
∑︀

𝑙𝑖×𝑤𝑖

2
<

∑︁
𝑚𝑖×𝑤𝑖

Where:

• 𝑝𝑖 Members of the last seen primary component;

• 𝑙𝑖 Members that are known to have left gracefully;

• 𝑚𝑖 Current component members; and,

• 𝑤𝑖 Member weights.

What this means is that the quorum is preserved if (and only if) the sum weight of the nodes in a new component
strictly exceeds half that of the preceding Primary Component, minus the nodes which left gracefully.

You can customize node weight using the pc.weight (page 304) parameter. By default, node weight is 1, which
translates to the traditional node count behavior.

You can change the node weight during runtime by setting the pc.weight (page 304) parameter.

SET GLOBAL wsrep_provider_options="pc.weight=3";

Galera Cluster applies the new weight on the delivery of a message that carries a weight. At the moment, there is no
mechanism to notify the application of a new weight, but will eventually happen when the message is delivered.

Warning: If a group partitions at the moment when the weight-change message is delivered, all partitioned
components that deliver weight-change messages in the transitional view will become non-primary components.
Partitions that deliver messages in the regular view, will go through quorum computation with the applied weight
when the subsequential transitional view is delivered. In other words, there is a corner case where the entire cluster
can become non-primary component, if the weight changing message is sent at the moment when partitioning takes
place. Recovering from such a situation should be done either by waiting for a re-merge or by inspecting which
partition is most advanced and by bootstrapping it as a new Primary Component.

Weighted Quorum Examples

Now that you understand how quorum weights work, here are some examples of deployment patterns and how to use
them.

Weighted Quorum for Three Nodes

When configuring quorum weights for three nodes, use the following pattern:

2.8. Quorum Components 33

Galera Cluster Documentation, Releases 3.x and 4.x

node1: pc.weight = 2
node2: pc.weight = 1
node3: pc.weight = 0

Under this pattern, killing node2 and node3 simultaneously preserves the Primary Component on node1. Killing
node1 causes node2 and node3 to become non-primary components.

Weighted Quorum for a Simple Primary-Replica Scenario

When configuring quorum weights for a simple primary-replica scenario, use the following pattern:

node1: pc.weight = 1
node2: pc.weight = 0

Under this pattern, if the primary node dies, node2 becomes a non-primary component. However, in the event that
node2 dies, node1 continues as the Primary Component. If the network connection between the nodes fails, node1
continues as the Primary Component while node2 becomes a non-primary component.

Weighted Quorum for a Primary and Multiple Replicas Scenario

When configuring quorum weights for a primary-replica scenario that features multiple replica nodes, use the following
pattern:

node1: pc.weight = 1
node2: pc.weight = 0
node3: pc.weight = 0
...
noden: pc.weight = 0

Under this pattern, if node1 dies, all remaining nodes end up as non-primary components. If any other node dies,
the Primary Component is preserved. In the case of network partitioning, node1 always remains as the Primary
Component.

Weighted Quorum for a Primary and Secondary Site Scenario

When configuring quorum weights for primary and secondary sites, use the following pattern:

Primary Site:
node1: pc.weight = 2
node2: pc.weight = 2

Secondary Site:
node3: pc.weight = 1
node4: pc.weight = 1

Under this pattern, some nodes are located at the primary site while others are at the secondary site. In the event that
the secondary site goes down or if network connectivity is lost between the sites, the nodes at the primary site remain
the Primary Component. Additionally, either node1 or node2 can crash without the rest of the nodes becoming
non-primary components.

Related Documents

• evs.suspect_timeout (page 290)

• Galera Arbitrator (page 108)

34 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

• pc.weight (page 304)

• Reset Quorum (page 96)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Limitations (page 36)

• Streaming Replication (page 107)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.9 Streaming Replication

Under normal operation, the node performs all replication and certification events when a transaction commits. When
working with small transactions this is fine. However, it poses an issue with long-running writes and changes to large
data-sets.

In Streaming Replication, the node breaks the transaction into fragments, then certifies and replicates them on the
replicas while the transaction is still in progress. Once certified, the fragment can no longer be aborted by conflicting
transactions.

Additionally, Streaming Replication allows the node to process transaction write-sets greater than 2Gb.

Note: Streaming Replication is a new feature introduced in version 4.0 of Galera Cluster. Older versions do not
support these operations.

When to Use Streaming Replication

In most cases, the normal method Galera Cluster uses in replication is sufficient in transferring data from a node to a
cluster. Streaming Replication provides you with an alternative for situations in which this is not the case. Keep in
mind that there are some limitations to its use. It is recommended that you only enable it at a session-level, and then
only on specific transactions that require the feature.

For more information on the limitations to Streaming Replication, see Limitations (page 36).

2.9. Streaming Replication 35

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Long-Running Write Transactions

When using normal replication, you may occasionally encounter issues with long-running write transactions.

The longer it takes for a node to commit a transaction, the greater the likelihood that the cluster will apply a smaller,
conflicting transaction before the longer one can replicate to the cluster. When this happens, the cluster aborts the
long-running transaction.

Using Streaming Replication on long-running transactions mitigates this situation. Once the node replicates and
certifies a fragment, it is no longer possible for other transactions to abort it.

Certification keys are generated from record locks, therefore they do not cover gap locks or next key locks. If the
transaction takes a gap lock, it is possible that a transaction, which is executed on another node, will apply a write set
which encounters the gap log and will abort the streaming transaction.

Large Data Write Transactions

When using normal replication, the node locally processes the transaction and does not replicate the data until you
commit. This can create problems when updating a large volume of data, especially on nodes with slower network
connections.

Additionally, while replica nodes apply a large transaction, they cannot commit other transactions they receive, which
may result in Flow Control throttling of the entire cluster.

With Streaming Replication, the node begins to replicate the data with each transaction fragment, rather than waiting
for the commit. This allows you to spread the replication over the lifetime of the transaction.

In the case of the replica nodes, after the replica applies a fragment, it is free to apply and commit other, concurrent
transactions without blocking. This allows the replica node to process incrementally the entire large transaction with
a minimal impact on the cluster.

Hot Records

In situations in which an application frequently updates one and the same records from the same table (for example,
when implementing a locking scheme, a counter, or a job queue), you can use Streaming Replication to force critical
updates to replicate to the entire cluster.

Running a transaction in this way effectively locks the hot record on all nodes, preventing other transactions from
modifying the row. It also increases the chances that the transaction will commit successfully and that the client in
turn will receive the desired outcome.

For more information and an example of how to implement Streaming Replication in situations such as this, see Using
Streaming Replication with Hot Records (page 107).

Limitations

In deciding whether you want to use Streaming Replication with your application, consider the following limitations.

Performance During a Transaction

When you enable Streaming Replication, as of version 4 of Galera, each node in the cluster begins recording its
write-sets to the wsrep_streaming_log table in the mysql database. Nodes do this to ensure the persistence of
Streaming Replication updates in the event that they crash. However, this operation increases the load on the node,
which may adversely affect its performance.

36 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

As such, it is recommended that you only enable Streaming Replication at a session-level and then only for transactions
that would not run correctly without it.

Performance During Rollbacks

Occasionally, you may encounter situations in which the cluster needs to roll back a transaction while Streaming
Replication is in use. In these situations, the rollback operation consumes system resources on all nodes.

When long-running write transactions frequently need to be rolled back, this can become a performance problem.
Therefore, it is a good application design policy to use shorter transactions whenever possible. In the event that
your application performs batch processing or scheduled housekeeping tasks, consider splitting these into smaller
transactions in addition to using Streaming Replication.

Related Documents

• Limitations (page 36)

• Streaming Replication (page 107)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Articles

• Install Galera

• Install Galera on AWS

Other Resources

• Galera AWS (video)

• Galera MariaDB (video)

• Galera MySQL (video)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

2.9. Streaming Replication 37

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

38 Chapter 2. Technical Description

CHAPTER

THREE

INSTALLING GALERA CLUSTER

Galera Cluster is essentially used to form a cluster among multiple database servers. It is widely used in conjunction
with MySQL, MariaDB, and XtraDB database software systems. Galera Cluster is integral to these database systems.
As a result, it may be installed together with one of them.

There are several methods available for installing the paired systems: you may use binary installation packages or
install with the source files. Below is a list of the various pairs and links to how to use whichever method your prefer:

Installing MySQL Galera Cluster

MySQL the company and the database software was purchased quite a while ago by Oracle. They continue to support
MySQL software and cooperate with Codership to deliver an excellent database cluster system.

MySQL Binary Installation

Click on the heading here to read this article on how to install MySQL using a binary installation package. Binary
installation packages are available for Linux distributions using apt-get and yum package managers through the
Codership repository.

MySQL Source Installation

If you are using a Linux distribution for which we do not have binary files that work with its package management
system, or if your server uses a different unix-like operating system (for example, Solaris or FreeBSD), you will need
to build Galera Cluster for MySQL from source files.

Installing MariaDB Galera Cluster

MariaDB the company and the database software is somewhat of a spinoff or fork of MySQL. The software is basically
the same as MySQL; Some people who worked formerly at MySQL, founded MariaDB several years ago. Because
of all of this, MariaDB software works well with Galera. In fact, starting with version 10.4 of MariaDB, Galera is
included. Before that version, you will have to use one our binary installation packages or install from the source files.

MariaDB Binary Installation

This article provides information on how to install MariaDB using a binary installation package. They’re available for
Debian-based and RPM-based distributions of Linux, from the MariaDB Repository Generator.

39

https://downloads.mariadb.org/mariadb/repositories/

Galera Cluster Documentation, Releases 3.x and 4.x

MariaDB Source Installation

If there aren’t a binary installation packages that are suited to the distribution of Linux your servers are using, or you
are using a different unix-like operating system (for example, Solaris or FreeBSD), you will have to build MariaDB
Galera Cluster from the source files.

Installing XtraDB Galera Cluster

Many years before MariaDB was formed and several years before MySQL was bought by Oracle, some key personnel
at MySQL, who specialized in performance tuning MySQL software, left to form Percona—the name is an amalgama-
tion of the words, Performance and Consulting. In their efforts to get the most out of MySQL software, they developed
their own fork with some extra performance enhancements, called XtraDB. It also works well with Galera Cluster.

XtraDB Binary Installation

Binary packages for installing XtraDB with Galera Cluster are available for Debian-based and RPM-based distribu-
tions, but through the Percona repository. This article explains how to install and configure this pairing of software, as
well as provides links to the repository.

XtraDB Source Installation

You may not be able to use one of the binary installation packages available because of your operating system. If so,
you will have to use our source files. Actually, you may want to use the source files to make minor changes that will
become part of the files you will build.

Related Articles

• Install Galera

• Install Galera on AWS

Other Resources

• Galera AWS (video)

• Galera MariaDB (video)

• Galera MySQL (video)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Install Galera (page 39)

40 Chapter 3. Installing Galera Cluster

Galera Cluster Documentation, Releases 3.x and 4.x

• Galera MySQL Source (page 46)

• MySQL Shared Compatibility Libraries (page 44)

• Galera MariaDB Binaries (page 50)

Related Articles

• ../training/tutorials/migration

Other Resources

• Galera AWS (video)

• Galera MySQL (video)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

3.1 Galera Cluster for MySQL—Binary Installation

Galera Cluster for MySQL may be installed on Linux servers using binary packages. These files can be downloaded
directly from the Codership repository, or by way of a package manager: apt-get or yum.

Enabling the Codership Repository

To install Galera Cluster for MySQL with a package manager, you first will have to enable the Codership repository
on the server. There are a few ways to do this, depending on which Linux distribution and package manager you use.
The sections below provide details on how to use each of the three main supported package managers to install Galera
Cluster for MySQL.

Enabling the apt Repository

For Debian and Debian-based Linux distributions, the procedure for adding a repository requires that you first install
the Software Properties. The package names vary depending on the distribution. For Debian, at the command-line,
execute the following command:

apt-get install python-software-properties

For Ubuntu or a distribution derived from Ubuntu, you would execute instead the following:

apt-get install software-properties-common

3.1. Galera Cluster for MySQL—Binary Installation 41

https://galeracluster.com
https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

If your server uses a different Debian-based distribution, and neither of these commands work on your system, try
consulting your distribution’s package listings for the appropriate package name.

Once you have the Software Properties installed, you can then enable the Codership repository for your system. Start
by adding the GnuPG key for the repository. This is done by executing the following from the command-line:

apt-key adv --keyserver keyserver.ubuntu.com --recv 8DA84635

Note: For packages before MySQL 5.7.44 and 8.0.35, the signing key is BC19DDBA. Next, add the Codership
repository to your sources list. Using a simple text editor, create file called, galera.list in the /etc/apt/sources.
list.d/ directory. Add these lines to that file, with the necessary adjustments for the version used:

Codership Repository (Galera Cluster for MySQL)
deb https://releases.galeracluster.com/mysql-wsrep-VERSION/DIST RELEASE main
deb https://releases.galeracluster.com/galera-3/DIST RELEASE main

In the example above, you would change the repository addresses. The VERSION should be set to MySQL-wsrep
version you want to install. For example, it might be something like, 8.4. The DIST should be replaced with the
name of the Linux distribution on the server. This could be ubuntu. Last, replace RELEASE with the distribution
release (for example, wheezy).

If you do not know which release you have installed on your server, you can generally find this using the following
command:

lsb_release -a

Version 4 of Galera was recently released. If you’d like to install it, the configuration lines in galera.list should read
similar to the following:

Codership Repository (Galera Cluster for MySQL)
deb https://releases.galeracluster.com/galera-4/ubuntu focal main
deb https://releases.galeracluster.com/mysql-wsrep-8.0/ubuntu focal main

Again, you may have to adust the version and release numbers, depending on which you want to install. Please note
that this will require at least version 18.04 of Ubuntu.

To be assured the proper version is installed and updated, set which repository you prefer to the Codership repository
(this is not only recommended, it is required). To do this, using a text editor, create a file called, galera.pref in the
/etc/apt/preferences.d/ directory. The contents should look like the following:

Prefer Codership repository
Package: *
Pin: origin releases.galeracluster.com
Pin-Priority: 1001

This is needed to make sure the patched versions are preferred. This might be important, for instance, if a third-party
program requires libmysqlclient20 and the OS-version for the library is newer.

Finally, you should update the local cache of the repository. Do this by entering the following from the command-line:

apt-get update

Once you’ve done all of these tasks, the packages in the Codership repository will be available for installation. For
information on installing them using apt-get, skip ahead on this page to the section entitled, Installing Galera
Cluster for MySQL (page 43).

42 Chapter 3. Installing Galera Cluster

Galera Cluster Documentation, Releases 3.x and 4.x

Enabling the yum Repository

For rpm-based distributions of Linux (for example, CentOS and Red Hat Enterprise Linux), you will need to enable the
Codership repository. Using a simple text editor, create a file called, galera.repo in the /etc/yum.repos.d/
directory. The contents of that file should look something like the following:

[galera]
name = Galera
baseurl = https://releases.galeracluster.com/galera-3/DIST/RELEASE/ARCH
gpgkey = https://releases.galeracluster.com/GPG-KEY-galeracluster.com
gpgcheck = 1

[mysql-wsrep]
name = MySQL-wsrep
baseurl = https://releases.galeracluster.com/mysql-wsrep-VERSION/DIST/RELEASE/ARCH
gpgkey = https://releases.galeracluster.com/GPG-KEY-galeracluster.com
gpgcheck = 1

In this sample repository configuration file, you would change the repository addresses for the baseurl. The
VERSION should be set to the whichever MySQL-wsrep version you want (for example, it might be 5.7). The
DIST should be changed to the name of the Linux distribution you are using on your sever (for example, centos).
The RELEASE should be replaced with the distribution’s release number. It might be 7 or 8 for CentOS and Red Hat
Enterprise Linux. Last, the ARCH indicates the architecture of your hardware. This could be changed to x86_64 for
64-bit systems.

Here is a sample repository configuration file for CentOS 7 and Galera Cluster with MySQL 8.

[galera4]
name = Galera
baseurl = https://releases.galeracluster.com/galera-4/centos/7/x86_64
gpgkey = https://releases.galeracluster.com/GPG-KEY-galeracluster.com
gpgcheck = 1

[mysql-wsrep8]
name = MySQL-wsrep
baseurl = https://releases.galeracluster.com/mysql-wsrep-8.0/centos/7/x86_64
gpgkey = https://releases.galeracluster.com/GPG-KEY-galeracluster.com
gpgcheck = 1

After you’ve created, modified, and saved this repository file, you will be able to install the packages from the Coder-
ship repository using yum. For an explanation on installing, skip ahead on this page to the section entitled, Installing
Galera Cluster for MySQL (page 43).

Installing Galera Cluster for MySQL

There are two packages involved in the installation of Galera Cluster for MySQL: the MySQL database server, but one
that has been built to include the wsrep API; and the Galera Replication Plugin. The yum repositories include Galera
Arbitrator with the Galera Replication Plugin, but for Debian-based distributions using apt-get you will need to
include add it to your installation instruction.

Note: If SELinux (Security-Enhanced Linux) is enabled on the servers, disable it. See Disabling SELinux for mysqld.
Also, if AppArmor is enabled on the servers, disable it. See Disabling AppArmor. However, this is optional, and there
are methods to enable the context files.

3.1. Galera Cluster for MySQL—Binary Installation 43

Galera Cluster Documentation, Releases 3.x and 4.x

So, for Debian-based distributions using the apt-get package manager, execute the following from the command-
line:

For Galera Cluster 8.0:

apt-get install galera-4 galera-arbitrator-4 mysql-wsrep-8.0

For Galera Cluster 8.4:

apt-get install galera-4 galera-arbitrator-4 mysql-wsrep-8.4

On servers using the yum package manager (that is, Red Hat Enterprise Linux and CentOS distributions), you would
instead execute this command:

yum install galera-4 mysql-wsrep-8.4

For mysql-wsrep-8.0:

yum install galera-4 mysql-wsrep-8.0

Note: On CentOS 7, this command may generate a transaction check error. For more information on that error and
how to resolve it, see the section below on MySQL Shared Compatibility Libraries (page 44).

Please note that on Red Hat 8, you need to disable MySQL and MariaDB modules before installing Galera Cluster from
a repository under https://releases.galeracluster.com/. In order to do this, execute the following from the command-
line:

dnf module disable mysql mariadb

Once you’ve executed the line appropriate to your distribution and package manager, Galera Cluster for MySQL
should be installed on your server. You will then have to repeat this process for each node in your cluster, including
enabling the repository files mentioned earlier.

Incidentally, when deciding which packages from the Codership repository to install, the package manager may elect
to install a newer major verion of Galera Cluster, newer than the one you intended to install. Before confirming the
installation of packages, make sure that the package manager is planning to install the Galera Cluster version you
want.

If you installed Galera Cluster for MySQL over an existing stand-alone instance of MySQL, there are some addi-
tional steps that you will need to take to update your system to the new database server. For more information, see
../training/tutorials/migration.

MySQL Shared Compatibility Libraries

When installing Galera Cluster for MySQL on CentOS 7, you may encounter a transaction check-error that blocks the
installation. The error message may look something like this:

Transaction Check Error:
file /usr/share/mysql/czech/errmsg.sys from install
mysql-wsrep-server-5.6-5.6.23-25.10.e16.x86_64 conflicts
with file from package mysql-libs-5.1.73-.3.e16_5.x86_64

This relates to a dependency problem between the version of the MySQL shared compatibility libraries that CentOS
uses, and the one that Galera Cluster requires. To resolve this, you will have to upgrade, which can be done with the
Codership repository using yum.

44 Chapter 3. Installing Galera Cluster

https://releases.galeracluster.com/

Galera Cluster Documentation, Releases 3.x and 4.x

There are two versions available for this package. Which version you will need will depend on which version of the
MySQL wsrep database server you want to install.

For CentOS, you would enter something like the following from the command-line:

yum upgrade -y mysql-wsrep-libs-compat-VERSION

You would, of course, replace VERSION here with 5.7 or 8.0, depending on the version of MySQL you want to
use. For CentOS 7, to install MySQL version 5.7, you would execute the following from the command-line:

yum upgrade mysql-wsrep-shared-5.7

For CentOS 7, to install MySQL version 5.7, you will also need to disable the 5.7 upgrade. To do this, enter the
following from the command-line:

yum upgrade -y mysql-wsrep-shared-5.7 -x mysql-wsrep-shared-5.7

When yum finishes the upgrade, you can then install the MySQL wsrep database server and the Galera Replication
Plugin as described above.

Related Documents

• Install Galera (page 39)

• Galera MySQL Source (page 46)

• MySQL Shared Compatibility Libraries (page 44)

• Galera MariaDB Binaries (page 50)

Related Articles

• ../training/tutorials/migration

Other Resources

• Galera AWS (video)

• Galera MySQL (video)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Install Galera (page 39)

• Galera MySQL Binaries (page 41)

• Galera MariaDB Source (page 53)

• wsrep_provider (page 259)

3.1. Galera Cluster for MySQL—Binary Installation 45

Galera Cluster Documentation, Releases 3.x and 4.x

Related Articles

• ../training/tutorials/migration

• System Configuration

• Replication Configuration

• Home

• Docs (page 1)

• KB

• Training

• FAQ

3.2 Galera Cluster for MySQL - Source Installation

Galera Cluster for MySQL is the reference implementation from Codership Oy. Binary installation packages are
available for Debian- and RPM-based distributions of Linux. If your Linux distribution is based upon a different
package management system, if your server uses a different unix-like operating system, such as Solaris or FreeBSD,
you will need to build Galera Cluster for MySQL from source.

Note: If you built Galera Cluster for MySQL over an existing standalone instance of MySQL, there are some
additional steps that you need to take in order to update your system to the new database server. For more information,
see ../training/tutorials/migration.

Installing Build Dependencies

When building from source code, make cannot manage or install dependencies for either Galera Cluster or the build
process itself. You need to install these first. For Debian-based systems, run the following command:

apt-get build-dep mysql-server

For RPM-based distributions, instead run this command:

yum-builddep MySQL-server

If neither command works on your system or that you use a different Linux distribution or FreeBSD, the following
packages are required:

• MySQL Database Server with wsrep API: Git, CMake, GCC and GCC-C++, Automake, Autoconf, and Bison,
as well as development releases of libaio and ncurses.

• Galera Replication Plugin: SCons, as well as development releases of Boost, Check and OpenSSL.

Check with the repositories for your distribution or system for the appropriate package names to use during installation.
Bear in mind that different systems may use different names and that some may require additional packages to run.
For instance, to run CMake on Fedora you need both cmake and cmake-fedora.

46 Chapter 3. Installing Galera Cluster

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Building Galera Cluster for MySQL

The source code for Galera Cluster for MySQL is available through GitHub. You can download the source code from
the website or directly using git. In order to build Galera Cluster, you need to download both the database server
with the wsrep API patch and the Galera Replication Plugin.

To download the database server, complete the following steps:

1. Clone the Galera Cluster for MySQL database server source code.

git clone https://github.com/codership/mysql-wsrep

2. Checkout the branch for the version that you want to use.

git checkout 8.4

The main branches available for Galera Cluster for MySQL are:

• 8.0

• 8.4

You now have the source files for the MySQL database server, including the wsrep API patch needed for it to function
as a Galera Cluster node.

In addition to the database server, you need the wsrep Provider, also known as the Galera Replication Plugin. In a
separator directory, run the following command:

cd ..
git clone https://github.com/codership/galera.git

Once Git finishes downloading the source files, you can start building the database server and the Galera Replication
Plugin. The above procedures created two directories: mysql-wsrep/ for the database server source and for the
Galera source galera/

Building the Database Server

The database server for Galera Cluster is the same as that of the standard database servers for standalone instances
of MySQL, with the addition of a patch for the wsrep API, which is packaged in the version downloaded from
GitHub. You can enable the patch through the wsrep API, requires that you enable it through the WITH_WSREP
and WITH_INNODB_DISALLOW_WRITES CMake configuration options.

To build the database server, cd into the mysql-wsrep/ directory and run the following commands:

cmake -DWITH_WSREP=ON -DWITH_INNODB_DISALLOW_WRITES=ON ./
make
make install

Building the wsrep Provider

The Galera Replication Plugin implements the wsrep API and operates as the wsrep Provider for the database server.
What it provides is a certification layer to prepare write-sets and perform certification checks, a replication layer and a
group communication framework.

To build the Galera Replicator plugin, cd into the galera/ directory and run SCons:

3.2. Galera Cluster for MySQL - Source Installation 47

https://github.com
https://github.com

Galera Cluster Documentation, Releases 3.x and 4.x

scons

This process creates the Galera Replication Plugin, (that is, the libgalera_smm.so file). In your my.cnf con-
figuration file, you need to define the path to this file for the wsrep_provider (page 259) parameter.

Note: For FreeBSD users, building the Galera Replicator Plugin from source raises certain Linux compatibility
issues. You can mitigate these by using the ports build at /usr/ports/databases/galera.

Post-installation Configuration

After the build completes, there are some additional steps that you must take in order to finish installing the database
server on your system. This is over and beyond the standard configurations listed in System Configuration and Repli-
cation Configuration.

Note: Unless you defined the CMAKE_INSTALL_PREFIX configuration variable when you ran cmake above, by
default the database server installed to the path /usr/local/mysql/. If you chose a custom path, adjust the
commands below to accommodate the change.

1. Create the user and group for the database server.

groupadd mysql
useradd -g mysql mysql

2. Install the database.

cd /usr/local/mysql
./scripts/mysql_install_db --user=mysql

This installs the database in the working directory. That is, at /usr/local/mysql/data/. If you would
like to install it elsewhere or run it from a different directory, specify the desired path with the --basedir and
--datadir options.

3. Change the user and group for the directory.

chown -R mysql /usr/local/mysql
chgrp -R mysql /usr/local/mysql

4. Create a system unit.

cp /usr/local/mysql/supported-files/mysql.server \
/etc/init.d/mysql

chmod +x /etc/init.d/mysql
chkconfig --add mysql

This allows you to start Galera Cluster using the service command. It also sets the database server to start
during boot.

In addition to this procedure, bear in mind that any custom variables you enabled during the build process, such as
a nonstandard base or data directory, requires that you add parameters to cover this in the configuration file, (that is,
my.cnf).

Note: This tutorial omits MySQL authentication options for brevity.

48 Chapter 3. Installing Galera Cluster

Galera Cluster Documentation, Releases 3.x and 4.x

Related Documents

• Install Galera (page 39)

• Galera MySQL Binaries (page 41)

• Galera MariaDB Source (page 53)

• wsrep_provider (page 259)

Related Articles

• System Migration

• System Configuration

• Replication Configuration

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Install Galera (page 39)

• MariaDB Galera Source (page 53)

• Galera MySQL (page 41)

Related Articles

• ../training/tutorials/migration

Other Resources

• Galera AWS (video)

• Galera MariaDB (video)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

3.2. Galera Cluster for MySQL - Source Installation 49

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

3.3 MariaDB Galera Cluster - Binary Installation

MariaDB Galera Cluster is the MariaDB implementation of Galera Cluster. Binary installation packages are avail-
able for Debian-based and RPM-based distributions of Linux through the MariaDB repository (MariaDB Repository
Generator).

Enabling the MariaDB Repository

In order to install MariaDB Galera Cluster through your package manager, you need to enable the MariaDB repository
on your server. There are two different ways to accomplish this, depending on which Linux distribution you use.

Enabling the apt Repository

For Debian and Debian-based Linux distributions, the procedure for adding a repository requires that you first install
the software properties. The package names vary depending on your distribution. For Debian, at the command-line
execute the following:

apt-get install python-software-properties

For Ubuntu or a distribution derived from Ubuntu, execute instead this command:

50 Chapter 3. Installing Galera Cluster

https://downloads.mariadb.org/mariadb/repositories/
https://downloads.mariadb.org/mariadb/repositories/

Galera Cluster Documentation, Releases 3.x and 4.x

$ sudo apt-get install software-properties-common

If you are use a different Debian-based distribution and neither of these lines above work, consult your distribution’s
package listings for the appropriate package name.

Once you have the software properties installed, you can enable the MariaDB repository for your server.

First, add the GnuPG key for the MariaDB repository by executing the following from the command-line:

apt-key adv --recv-keys --keyserver \
keyserver.ubuntu.com 0xcbcb082a1bb943db

Next, add the MariaDB repository to your sources list. You can do this by entering something like the following from
the command-line:

add-apt-repository 'deb https://mirror.jmu.edu/pub/mariadb/repo/version/distro
→˓release main'

You wouldn’t enter exactly the line above. You’ll have to adjust the repository address:

• version indicates the version number of MariaDB that you want to use. (for example, 10.4).

• distro is the name of the Linux distribution you are using’ (for example, ubuntu).

• release should be changed to your distribution release (for example, wheezy).

If you do not know which release is installed on your server, you can determine this by using the entering the following
from the command-line:

$ lsb_release -a

1. You should also update the local cache on the server. You can do this by entering the following:

apt-get update

For more information on the MariaDB repository, package names and available mirrors, see the MariaDB Repository
Generator.

Packages in the MariaDB repository are now available for installation through apt-get.

Enabling the yum Repository

For RPM-based distributions (for example, CentOS and Red Hat Enterprise Linux), you can enable the MariaDB
repository by creating a text file with .repo as the file extension to the /etc/yum/repos.d/ directory.

Using a simple text editor, create a new .repo file containing something like the following:

MariaDB.repo

[mariadb]
name = MariaDB
baseurl = https://yum.mariadb.org/version/package
gpgkey = httpss://yum.mariadb.org/RPM-GPG-KEY-MariaDB
gpgcheck = 1

For the value of baseurl, you will have to adjust the web address:

• version should be changed to the version of MariaDB you want to use (for example, 10.4).

3.3. MariaDB Galera Cluster - Binary Installation 51

https://downloads.mariadb.org/mariadb/repositories/
https://downloads.mariadb.org/mariadb/repositories/

Galera Cluster Documentation, Releases 3.x and 4.x

• package will have to be changed to the package name for your operating system distribution, release and
architecture. For example, rhel8-amd64 would reference packages for a Red Hat Enterprise Linux 8 server
running on 64-bit hardware.

For more information on the repository, package names or available mirrors, see the MariaDB Repository Generator.
It will generate the actual text you will need to put in your repository configuration file. In fact, by clicking through the
choices presented, you can just copy the results and paste them into your configuration file without any modification.

Installing MariaDB Galera Cluster

There are three packages involved in the installation of MariaDB Galera Cluster: the MariaDB database client, a
command-line tool for accessing the database; the MariaDB database server, built to include the wsrep API patch; and
the Galera Replication Plugin.

For Debian-based distributions, from the command-line run the following commands:

apt-get update
apt-get install mariadb-server mariadb-client galera-4

Note: For MariaDB 10.3 and before, replace galera-4 with galera-3.

For RPM-based distributions, first install the EPEL repository and the PV utility:

• For CentOS:

yum install epel-release
yum install pv

• For Red Hat Enterprise Linux:

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-
→˓$(rpm -E '%{rhel}').noarch.rpm
yum install pv

Then, to install MariaDB Galera Cluster, execute from the command line the following:

yum install MariaDB-server MariaDB-client galera-4

Note: For MariaDB 10.3 and before, replace galera-4 with galera-3.

Once you’ve done this, MariaDB Galera Cluster will be installed on your server. You’ll need to repeat this process for
each node in your cluster.

Note: If you installed MariaDB Galera Cluster over an existing stand-alone instance of MariaDB, there are some
additional steps that you will need to take to update your system to the new database server. For more information on
this, see ../training/tutorials/migration.

Related Documents

• Install Galera (page 39)

• MariaDB Galera Source (page 53)

• Galera MySQL (page 41)

52 Chapter 3. Installing Galera Cluster

https://downloads.mariadb.org/mariadb/repositories/

Galera Cluster Documentation, Releases 3.x and 4.x

Related Articles

• ../training/tutorials/migration

Other Resources

• Galera AWS (video)

• Galera MariaDB (video)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Install Galera (page 39)

• MariaDB Galera Binaries (page 50)

• Galera MySQL Source (page 46)

• wsrep_provider (page 259)

Related Articles

• Migration

• System Configuration

• Replication Configuration

• Home

• Docs (page 1)

• KB

• Training

• FAQ

3.4 MariaDB Galera Cluster - Source Installation

MariaDB Galera Cluster is the MariaDB implementation of Galera Cluster for MySQL. Binary installation packages
are available for Debian- and RPM-based distributions of Linux. If your Linux distribution is based on a different
package management system, or if it runs on a different unix-like operating system where binary installation packages
are not available, such as Solaris or FreeBSD, you will need to build MariaDB Galera Cluster from source.

3.4. MariaDB Galera Cluster - Source Installation 53

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Note: If you built MariaDB Galera Cluster over an existing standalone instance of MariaDB, there are some additional
steps that you need to take in order to update your system to the new database server. For more information, see
Migration.

Preparing the Server

When building from source code, make cannot manage or install dependencies for either Galera Cluster or the build
process itself. You need to install these packages first.

• For Debian-based distributions of Linux, if MariaDB is available in your repositories, you can run the following
command:

apt-get build-dep mariadb-server

• For RPM-based distributions, instead run this command:

yum-builddep MariaDB-server

In the event that neither command works for your system or that you use a different Linux distribution or FreeBSD,
the following packages are required:

• MariaDB Database Server with wsrep API: Git, CMake, GCC and GCC-C++, Automake, Autoconf, and
Bison, as well as development releases of libaio and ncurses.

• Galera Replication Plugin: SCons, as well as development releases of Boost, Check and OpenSSL.

Check with the repositories for your distribution or system for the appropriate package names to use during installation.
Bear in mind that different systems may use different names and that some may require additional packages to run.
For instance, to run CMake on Fedora you need both cmake and cmake-fedora.

Building MariaDB Galera Cluster

The source code for MariaDB Galera Cluster is available through GitHub. Using Git you can download the source
code to build MariaDB and the Galera Replicator Plugin locally on your system.

1. Clone the MariaDB database server repository.

git clone https://github.com/mariadb/server

2. Checkout the branch for the version that you want to use.

git checkout 10.0-galera

The main branches available for MariaDB Galera Cluster are:

• 10.1

• 10.0-galera

Starting with version 10.1, MariaDB includes the wsrep API for Galera Cluster by default.

Warning: MariaDB version 10.1 is still in beta.

54 Chapter 3. Installing Galera Cluster

https://github.com

Galera Cluster Documentation, Releases 3.x and 4.x

You now have the source files for the MariaDB database server with the wsrep API needed to function as a Galera
Cluster node.

In addition to the database server, you also need the wsrep Provider, also known as the Galera Replicator Plugin. In a
separate directory run the following command:

cd ..
git clone https://github.com/codership/galera.git

Once Git finishes downloading the source files, you can start building the database server and the Galera Replicator
Plugin. You now have the source files for the database server in a server/ directory and the Galera source files in
galera/.

Building the Database Server

The database server for Galera Cluster is the same as that of the standard database servers for standalone instances
of MariaDB, with the addition of a patch for the wsrep API, which is packaged in the version downloaded from
GitHub. You can enable the patch through the WITH_WSREP and WITH_INNODB_DISALLOW_WRITES CMake
configuration options.

To build the database server, cd into the server/ directory and run the following commands:

cmake -DWITH_WSREP=ON -DWITH_INNODB_DISALLOW_WRITES=ON ./
make
make install

Note: In addition to compiling through cmake and make, there are also a number of build scripts in the BUILD/
directory, which you may find more convenient to use. For example,

./BUILD/compile-pentium64-wsrep

This has the same effect as running the above commands with various build options pre-configured. There are several
build scripts available in the directory, select the one that best suits your needs.

Building the wsrep Provider

The Galera Replication Plugin implements the wsrep API and operates as the wsrep Provider for the database server.
What it provides is a certification layer to prepare write-sets and perform certification checks, a replication layer and a
group communication framework.

To build the Galera Replication Plugin, cd into the galera/ directory and run SCons.

scons

This process creates the Galera Replication Pluigin, (that is, the libgalera_smm.so file). In your my.cnf con-
figuration file, you need to define the path to this file for the wsrep_provider (page 259) parameter.

Note: For FreeBSD users, building the Galera Replication Plugin from source raises certain issues due to Linux
dependencies. You can mitigate these by using the ports build available at /usr/ports/databases/galera or
by installing the binary package:

pkg install galera

3.4. MariaDB Galera Cluster - Source Installation 55

https://github.com

Galera Cluster Documentation, Releases 3.x and 4.x

Post-installation Configuration

After the build completes, there are some additional steps that you must take in order to finish installing the database
server on your system. This is over and beyond the standard configuration process listed in System Configuration and
Replication Configuration.

Note: Unless you defined the CMAKE_INSTALL_PREFIX configuration variable when you ran cmake above, by
default the database is installed to the path /usr/local/mysql/. If you chose a custom path, adjust the commands
below to accommodate the change.

1. Create the user and group for the database server.

groupadd mysql
useradd -g mysql mysql

2. Install the database.

cd /usr/local/mysql
./scripts/mysql_install_db --user=mysql

This installs the database in the working directory, (that is, at /usr/local/mysql/data). If you would like
to install it elsewhere or run the script from a different directory, specify the desired paths with the --basedir
and --datadir options.

3. Change the user and group permissions for the base directory.

chown -R mysql /usr/local/mysql
chgrp -R mysql /usr/local/mysql

4. Create a system unit for the database server.

cp /usr/local/mysql/supported-files/mysql.server \
/etc/init.d/mysql

chmod +x /etc/init.d/mysql
chkconfig --add mysql

This allows you to start Galera Cluster using the service command. It also sets the database server to start
during boot.

In addition to this procedure, bear in mind that any further customization variables you enabled during the build pro-
cess, such as a nonstandard base or data directory, may require you to define additional parameters in the configuration
file, (that is, my.cnf).

Note: This tutorial omits MariaDB authentication options for brevity.

Related Documents

• Install Galera (page 39)

• MariaDB Galera Binaries (page 50)

• Galera MySQL Source (page 46)

• wsrep_provider (page 259)

Related Articles

• Migration

56 Chapter 3. Installing Galera Cluster

Galera Cluster Documentation, Releases 3.x and 4.x

• System Configuration

• Replication Configuration

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Articles

• ../training/tutorials/migration

• Home

• Docs (page 1)

• KB

• Training

• FAQ

3.5 Percona XtraDB Cluster - Binary Installation

Percona XtraDB Cluster is the Percona implementation of Galera Cluster for MySQL. Binary installation packages
are available for Debian- and RPM-based distributions through the Percona repository.

Enabling the Percona Repository

In order to install Percona XtraDB Cluster through your package manager, you need to first enable the Percona repos-
itory on your system. There are two different ways to accomplish this, depending upon which Linux distribution you
use.

Enabling the apt Repository

For Debian and Debian-based Linux distributions, the procedure for adding the Percona repository requires that you
first install Software Properties on your system. The package names vary depending upon which distribution you use.
For Debian, in the terminal run the following command:

apt-get install python-software-properties

For Ubuntu, instead run this command:

$ sudo apt-get install software-properties-common

3.5. Percona XtraDB Cluster - Binary Installation 57

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

In the event that you use a different Debian-based distribution and neither of these commands work, consult your
distribution’s package listings for the appropriate package name.

Once you have Software Properties installed, you can enable the Percona repository for your system.

1. Add the GnuPG key for the Percona repository:

add-key adv --recv-keys --keyserver \
keyserver.ubuntu.com 1C4CBDCDCD2EFD2A

2. Add the Percona repository to your sources list:

add-apt-repository 'deb https://repo.percona.com/apt release main'

For the repository address, make the following changes:

• release Indicates the release name for the distribution you are using. For example, wheezy.

In the event that you do not know which release you have installed on your server, you can find out using
the following command:

$ lsb_release -a

3. Update the local cache.

apt-get update

For more information on the repository, available packages and mirrors, see Percona Software Repositories Documen-
tation.

Packages in the Percona repository are now available for installation on your server through apt-get.

Enabling the yum Repository

For RPM-based distributions, you can enable the Percona repository through yum using the following command:

yum install https://repo.percona.com/yum/percona-release-latest.noarch.rpm

For more information on the repository, package names or available mirrors, see Percona Software Repositories Doc-
umentation.

Packages in the Percona repository are now available for installation on your server through yum.

Installing Percona XtraDB Cluster

There are three packages involved in the installation of Percona XtraDB Cluster: the Percona XtraDB client, a com-
mand line tool for accessing the database; the percona XtraDB database server, built to include the wsrep API patch
and the Galera Replication Plugin.

For Debian and Ubuntu-based distributions, run the following commands in the terminal:

apt-get update
apt-get install -y wget gnupg2 lsb-release curl
wget https://repo.percona.com/apt/percona-release_latest.generic_all.deb
dpkg -i percona-release_latest.generic_all.deb
apt-get update
percona-release setup pxc80
apt-get install -y percona-xtradb-cluster

58 Chapter 3. Installing Galera Cluster

https://docs.percona.com/percona-software-repositories/index.html
https://docs.percona.com/percona-software-repositories/index.html
https://docs.percona.com/percona-software-repositories/index.html
https://docs.percona.com/percona-software-repositories/index.html

Galera Cluster Documentation, Releases 3.x and 4.x

For RPM-based distributions, instead run this command:

yum install https://repo.percona.com/yum/percona-release-latest.noarch.rpm
percona-release setup pxc-80
yum install percona-xtradb-cluster

Percona XtraDB Cluster is now installed on your server.

Note: If you installed Percona XtraDB Cluster over an existing standalone instance of Percona XtraDB, there are
some additional steps that you need to take in order to update your system to the new database server. For more
information, see ../training/tutorials/migration.

Note: Telemetry is enabled by default. To disable it, see Telemetry on Percona XtraDB Cluster.

Related Articles

• ../training/tutorials/migration

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_provider (page 259)

Related Articles

• ../training/tutorials/migration

• System Configuration

• Replication Configuration

• Home

• Docs (page 1)

• KB

• Training

• FAQ

3.5. Percona XtraDB Cluster - Binary Installation 59

https://docs.percona.com/percona-xtradb-cluster/8.0/telemetry.html
https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

3.6 Percona XtraDB Cluster - Source Installation

Percona XtraDB Cluster is the Percona implementation of Galera Cluster for MySQL. Binary installation packages
are available for Debian- and RPM-based distributions of Linux. If your Linux distribution is based on a different
package management system or if it runs on a different unix-like operating system where binary installation packages
are unavailable, such as Solaris or FreeBSD, you will need to build Percona XtraDB Cluster from source.

Note: In the event that you built Percona XtraDB Cluster over an existing standalone instance of Percona XtraDB,
there are some additional steps that you need to take in order to update your system to the new database server. For
more information, see ../training/tutorials/migration.

Preparing the Server

When building from source code, make cannot manage or install dependencies necessary for either Galera Cluster
itself or the build process. You need to install these packages first.

• For Debian-based distributions of Linux, if Percona is available in your repositories, you can run the following
command:

apt-get build-dep percona-xtradb-cluster

• For RPM-based distributions, instead run this command:

yum-builddep percona-xtradb-cluster

In the event that neither command works for your system or that you use a different Linux distribution or FreeBSD,
the following packages are required:

• Percona XtraDB Database Server with wsrep API: Git, CMake, GCC and GCC-C++, Automake, Autoconf,
and Bison, as well as development releases of libaio and ncurses.

• Galera Replication Plugin: SCons, as well as development releases of Boost, Check and OpenSSL.

Check with the repositories for your distribution or system for the appropriate package names to use during installation.
Bear in mind that different systems may use different names and that some may require additional packages to run.
For instance, to run CMake on Fedora you need both cmake and cmake-fedora.

Building Percona XtraDB Cluster

The source code for Percona XtraDB Cluster is available through GitHub. Using Git you can download the source to
build both Percona XtraDB Cluster and the Galera Replication Plugin locally on your system.

1. Clone the Percona XtraDB Cluster database server.

git clone https://github.com/percona/percona-xtradb-cluster.git

2. Checkout the 8.0 branch and initialize submodules:

cd percona-xtradb-cluster
git checkout 8.0
git submodule update --init --recursive

You now have the source files for the Percona XtraDB Cluster database server, set to the branch of development that
you want to build.

60 Chapter 3. Installing Galera Cluster

https://github.com

Galera Cluster Documentation, Releases 3.x and 4.x

Download the matching Percona XtraBackup 8.0 tarball (*.tar.gz) for your operating system from Percona Downloads.
The following example extracts the Percona XtraBackup 8.0.32-25 tar.gz file to the target directory ./pxc-build:

```{.bash data-prompt="$"}
# tar -xvf percona-xtrabackup-8.0.32-25-Linux-x86_64.glibc2.17.tar.gz -C ./
→˓pxc-build
```

Run the build script ./build-ps/build-binary.sh. By default, it attempts building into the current directory.
Specify the target output directory, such as ./pxc-build:

mkdir ./pxc-build
./build-ps/build-binary.sh ./pxc-build

When the compilation completes, pxc-build contains a tarball, such as Percona-XtraDB-Cluster-8.0.
x86_64.tar.gz, that you can deploy on your system.

In addition to the database server, you also need the wsrep Provider, also known as the Galera Replication Plugin. In
a separate directory, run the following command:

cd ..
git clone https://github.com/codership/galera.git

Once Git finishes downloading the source file,s you can start building the database server and the Galera Replication
Plugin. You now have the source file for the database server in a percona-xtradb-cluster/ and the Galera
source files in galera/.

Building the Database Server

The database server for Galera Cluster is the same as that of the standard database servers for standalone instances of
Percona XtraDB, with the addition of a patch for the wsrep API, which is packaged in the version downloaded from
GitHub. You can enable the patch through the wsrep API, requires that you enable it through the WITH_WSREP and
WITH_INNODB_DISALLOW_WRITES CMake configuration options.

To build the database server, cd into the percona-xtradb-cluster directory and run the following commands:

cmake -DWITH_WSREP=ON -DWITH_INNDOB_DISALLOW_WRITES=ON ./
make
make install

Note: In addition to compiling through cmake and make, there are also a number of build scripts available in the
BUILD/ directory, which you may find more convenient to use. For example:

./BUILD/compile-pentium64

This has the same effect as running the above commands with various build options pre-configured. There are several
build scripts available in the BUILD/ directory. Select the one that best suits your nees.

Building the wsrep Provider

The Galera Replication Plugin implements the wsrep API and operates as the wsrep Provider for the database server.
What it provides is a certification layer to prepare write-sets and perform certification checks, a replication layer and a
group communication framework.

3.6. Percona XtraDB Cluster - Source Installation 61

https://www.percona.com/downloads
https://github.com

Galera Cluster Documentation, Releases 3.x and 4.x

To build the Galera Replication Plugin, cd into the galera/ directory and run SCons.

scons

This process creates the Galera Replication Plugin, (that is, the libgalera_smm.so file). In your my.cnf con-
figuration file, you need to define the path to this file for the wsrep_provider (page 259) parameter.

Note: For FreeBSD users, building the Galera Replication Plugin from sources raises certain Linux compatibility
issues. You can mitigate these by using the ports build available at /usr/ports/databases/galera or by
install the binary package:

pkg install galera

Post-installation Configuration

After the build completes, there are some additional steps that you must take in order to finish installing the database
server on your system. This is over and beyond the standard configuration process listed in System Configuration and
Replication Configuration.

Note: Unless you defined the CMAKE_INSTALL_PREFIX configuration varaible when you ran cmake above, by
default the database is installed to the path /usr/local/mysql/. If you chose a custom path, adjust the commands
below to accommodate this change.

1. Create the user and group for the database server.

groupadd mysql
useradd -g mysql mysql

2. Install the database.

cd /usr/local/mysql
./scripts/mysql_install_db --user=mysql

This installs the database in the working directory, (that is, at /usr/local/mysql/data). If you would like
to install it elsewhere or run the script from a different directory, specify the desired paths with the --basedir
and --datadir options.

3. Change the user and group permissions for the base directory.

chown -R mysql /usr/local/mysql
chgrp -R mysql /usr/local/mysql

4. Create a system unit for the database server.

cp /usr/local/mysql/supported-files/mysql.server \
/etc/init.d/mysql

chmod +x /etc/init.d/mysql
chkconfig --add mysql

This allows you to start Galera Cluster using the service command. It also sets the database server to start
during boot.

62 Chapter 3. Installing Galera Cluster

Galera Cluster Documentation, Releases 3.x and 4.x

In addition to this procedure, bear in mind that any further customization variables that you enabled during the build
process through cmake, (such as nonstandard base or data directories), may require you to define addition parameters
in the configuration file, (that is, the my.cnf).

Related Documents

• wsrep_provider (page 259)

Related Articles

• ../training/tutorials/migration

• System Configuration

• Replication Configuration

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Arbitrator (page 108)

• Auto-Eviction (page 103)

• Backups (page 112)

• Cluster Monitoring (page 143)

• Deployment (page 115)

• Flow Control (page 99)

• Galera System Tables (page 80)

• Node Provisioning (page 68)

• Recover Primary (page 93)

• Reset Quorum (page 96)

• Schema Upgrades (page 85)

• Scriptable SST (page 77)

• Security (page 213)

• State Snapshot Transfers (page 70)

• Streaming Replication (page 106)

• Upgrading Galera (page 89)

Related Articles

• ../training/tutorials/migrate

3.6. Percona XtraDB Cluster - Source Installation 63

Galera Cluster Documentation, Releases 3.x and 4.x

• Home

• Docs (page 1)

• KB

• Training

• FAQ

64 Chapter 3. Installing Galera Cluster

https://galeracluster.com

CHAPTER

FOUR

GALERA CLUSTER ADMINISTRATION

With the basics of how the cluster works and how to install and initialize it covered, this part begins a five part series
on the administration and management of Galera Cluster.

The sections in this part relate to the administration of nodes and the cluster. Deployment (page 115), covers how to
use Galera Cluster in relation to your wider infrastructure, how to configure load balancers to work with the cluster and
edge case deployments, such as running nodes in containers. The pages in Cluster Monitoring (page 143) show how
to keep tabs on the status of the cluster and automate reporting. Security (page 213) covers configuring Galera Cluster
to work with firewalls, SELinux and SSL encryption. ../training/tutorials/migrate how to transition from a standalone
instance of MySQL, MariaDB or Percona XtraDB to Galera Cluster.

Node Administration

Managing and administering nodes in Galera Cluster is similar to the administration and management of the standard
standalone MySQL, MariaDB and Percona XtraDB database servers, with some additional features used to manage
its interaction with the cluster. These pages cover the administration of individual nodes, how they handle write-set
replication and schema updates, and the procedure for upgrading Galera Cluster software.

• Node Provisioning (page 68)

The complete process of replicating data into a node so that it can operate as part of the Primary Component is
called ‘provisioning’ the node. It ensures that the nodes update the local data, keeping it consistent with the state
of the cluster. This section provides an overview to how nodes join the cluster and maintain their state through
state transfers.

• State Snapshot Transfers (page 70)

When a node falls too far behind the cluster, they request State Snapshot Transfers from another node in order
to bring its local database up to date with the cluster. This section provides a guide to each state transfer method
Galera Cluster supports.

• Scriptable State Snapshot Transfers (page 77)

When nodes send and receive State Snapshot Transfers, they manage the process through external scripts that
call the standard state transfer methods. If you require additional functionality than what is available by default,
you can create a script to implement your own custom state snapshot transfer methods.

• Galera System Tables (page 80)

When you install Galera Cluster, it creates a set of system tables in the mysql database, which it uses to store
configuration information. Similar to how the underlying database server uses the performance_schema
and information_schema, Galera Cluster uses these tables to record information relevant to replication.
This section provides a guide to what you will find in these tables and how you might query them for useful
information about the status of the node and the cluster.

65

Galera Cluster Documentation, Releases 3.x and 4.x

• Schema Upgrades (page 85)

Statements that update the database schema, (that is, DDL statements), are non-transactional and as such won’t
replicate to the cluster through write-sets. This section covers different methods for online schema upgrades and
how to implement them in your deployment.

• Upgrading Galera Cluster (page 89)

In order to upgrade Galera Cluster to a new version or increment of the software, there are a few additional steps
you need to take in order to maintain the cluster during the upgrade. This section provides guides to different
methods in handling this process.

Cluster Administration

In addition to node administration, Galera Cluster also provides interfaces for managing and administering the cluster.
These sections cover Primary Component recovery, managing Flow Control and Auto Eviction, as well as Galera
Arbitrator and how to handle backups.

• Recovering Primary Component (page 93)

When nodes establish connections with each other, they form components. The operational component in the
cluster is called the Primary Component. This section covers a new feature in version 3.6 of Galera Cluster,
which sets the nodes to save the Primary Component state to disk. In the event of an outage, once all the nodes
that previously formed the Primary Component reestablish network connectivity, they automatically restore
themselves as the new Primary Component.

• Resetting the Quorum (page 96)

The Primary Component maintains Quorum when most of the nodes in the cluster are connected to it. This
section provides a guide to resetting the quroum in the event that the cluster becomes non-operational due to a
major network outage, the failure of more than half the nodes, or a split-brain situation.

• Managing Flow Control (page 99)

When nodes fall too far behind, Galera Cluster uses a feedback mechanism called Flow Control, pausing repli-
cation to give the node to process transactions and catch up with the cluster. This section covers the monitoring
and configuration of Flow Control, in order to improve node performance.

• Auto-Eviction (page 103)

When Galera Cluster notices erratic behavior from a node, such as in the case of unusually delayed response
times, it can initiate a process to remove the node permanently from the cluster. This section covers the config-
uration and management of how the cluster handles these Auto Evictions.

• Using Streaming Replication (page 106)

When the node uses Streaming Replication, instead of waiting for the commit to replicate and apply transactions
to the cluster, it breaks the transaction down into replication units, transferring and applying these on the replica
nodes while the transaction is still open. This section provides a guide to how to enable, configure and utilize
Streaming Replication.

• Galera Arbitrator (page 108)

Galera Arbitrator is a separate application from Galera Cluster. It functions as an additional node in quorum
calculations, receives the same data as other node, but does not participate in replications. You can use it to
provide an odd node to help avoid split-brain situations, or use it in generating consistent application state
snapshots, in generating backups.

• Backing Up Cluster Data (page 112)

66 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

Standard backup methods available to MySQL database servers fail to preserve Global Transaction ID’s used
by Galera Cluster. You can recover data from these backups, but they’re insufficient in restoring nodes to a
well-defined state. This section shows how to use state transfers to properly perform backups in Galera Cluster.

Related Documents

• Arbitrator (page 108)

• Auto-Eviction (page 103)

• Backups (page 112)

• Cluster Monitoring (page 143)

• Deployment (page 115)

• Flow Control (page 99)

• Galera System Tables (page 80)

• Node Provisioning (page 68)

• Recover Primary (page 93)

• Reset Quorum (page 96)

• Schema Upgrades (page 85)

• Scriptable SST (page 77)

• Security (page 213)

• State Snapshot Transfers (page 70)

• Streaming Replication (page 106)

• Upgrading Galera (page 89)

Related Articles

• ../training/tutorials/migrate

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_sst_donor (page 265)

• wsrep_node_name (page 255)

• Home

• Docs (page 1)

• KB

67

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• Training

• FAQ

4.1 Node Provisioning

When the state of a new or failed node differs from that of the cluster’s Primary Component, the new or failed node
must be synchronized with the cluster. Because of this, the provisioning of new nodes and the recover of failed nodes
are essentially the same process as that of joining a node to the cluster Primary Component.

Galera reads the initial node state ID from the grastate.dat file, found in the directory assigned by the
wsrep_data_dir parameter. Each time the node gracefully shuts down, Galera saves to this file.

In the event that the node crashes while in Total Order Isolation mode, its database state is unknown and its initial
node state remains undefined:

00000000-0000-0000-0000-000000000000:-1

Note: In normal transaction processing, only the seqno part of the GTID remains undefined, (that is, with a value
of -1. The UUID, (that is, the remainder of the node state), remains valid. In such cases, you can recover the node
through an Incremental State Transfer.

How Nodes Join the Cluster

When a node joins the cluster, it compares its own state UUID to that of the Primary Component. If the state UUID
does not match, the joining node requests a state transfer from the cluster.

There are two options available to determining the state transfer donor:

• Automatic When the node attempts to join the cluster, the group communication layer determines the state
donor it should use from those members available in the Primary Component.

• Manual When the node attempts to join the cluster, it uses the wsrep_sst_donor (page 265) parameter to deter-
mine which state donor it should use. If it finds that the state donor it is looking for is not part of the Primary
Component, the state transfer fails and the joining node aborts. For wsrep_sst_donor (page 265), use the same
name as you use on the Donor Node for the wsrep_node_name (page 255) parameter.

Note: A state transfer is a heavy operation. This is true not only for the joining node, but also for the donor. In fact,
a state donor may not be able to serve client requests.

Thus, whenever possible: manually select the state donor, based on network proximity and configure the load balancer
to transfer client connections to other nodes in the cluster for the duration of the state transfer.

When a state transfer is in process, the joining node caches write-sets that it receives from other nodes in a replica
queue. Once the state transfer is complete, it applies the write-sets from the replica queue to catch up with the current
Primary Component state. Since the state snapshot carries a state UUID, it is easy to determine which write-sets the
snapshot contains and which it should discard.

During the catch-up phase, flow control ensures that the replica queue shortens, (that is, it limits the Cluster Replication
rates to the write-set application rate on the node that is catching up).

While there is no guarantee on how soon a node will catch up, when it does the node status updates to SYNCED and it
begins to accept client connections.

68 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

State Transfers

There are two types of state transfers available to bring the node up to date with the cluster:

• State Snapshot Transfer (SST) Where donor transfers to the joining node a snapshot of the entire node state as
it stands.

• Incremental State Transfer (IST) Where the donor only transfers the results of transactions missing from the
joining node.

When using automatic donor selection, starting in Galera Cluster version 3.6, the cluster decides which state transfer
method to use based on availability.

• If there are no nodes available that can safely perform an incremental state transfer, the cluster defaults to a state
snapshot transfer.

• If there are nodes available that can safely perform an incremental state transfer, the cluster prefers a local node
over remote nodes to serve as the donor.

• If there are no local nodes available that can safely perform an incremental state transfer, the cluster chooses a
remote node to serve as the donor.

• Where there are several local or remote nodes available that can safely perform an incremental state transfer, the
cluster chooses the node with the highest seqno to serve as the donor.

Related Documents

• wsrep_sst_donor (page 265)

• wsrep_node_name (page 255)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_sst_donor (page 265)

• wsrep_sst_method (page 267)

• gmcast.segment (page 299)

• mysqldump (page 73)

• rsync (page 75)

• clone (page 76)

• xtrabackup (page 75)

• Logical (page 71)

• Physical (page 74)

4.1. Node Provisioning 69

Galera Cluster Documentation, Releases 3.x and 4.x

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.2 State Snapshot Transfers

When a new node joins a cluster, it will request data from the cluster. One node, known as a donor, will use a State
Snapshot Transfer (SST) method to provide a full data copy to the new node, known as the joiner.

You can designate in advance which node should be the donor with the wsrep_sst_donor (page 265) parameter. If you
do not set the Donor Node, the Group Communication module will select a donor based on the information available
about the node states.

Group Communication monitors node states for the purposes of flow control, state transfers and Quorum calculations.
It ensures that a node that shows as JOINING does not count towards flow control and quorum.

A node can serve as a donor when it is in the SYNCED state. The Joiner Node selects a donor from the available synced
nodes. It shows preference to synced nodes that have the same gmcast.segment (page 299) wsrep Provider option, or
it selects the first in the index. When a donor node is chosen, its state changes immediately to DONOR. It is no longer
available for requests.

SST Methods

Galera supports several back-end methods for use in state snapshot transfers. There are two types: Logical State
Snapshots, which interface through the database server and client; and Physical State Snapshots, which directly copy
the data files from node to node.

Method Speed Blocks
Donor

Live Node Availabil-
ity

Type DB Root Ac-
cess

mysqldump
(page 73)

Slow Blocks Available Logical (page 71) Donor and Joiner

rsync (page 75) Faster Blocks Unavailable Physical
(page 74)

None

clone (page 76) Fastest On DDLs Unavailable Physical
(page 74)

Only Donor

xtrabackup
(page 75)

Fast Briefly Unavailable Physical
(page 74)

Only Donor

To set the State Snapshot Transfer method, use the wsrep_sst_method (page 267) parameter. In the example below,
the method is set to use rsync, along with the default donors:

wsrep_sst_method = rsync
wsrep_sst_donor = "node1, node2"

There is no single best method for State Snapshot Transfers. You must decide which suits your particular needs and
cluster deployment. Fortunately, you need only set the method on the receiving node. So long as the donor has support,
it serves the transfer in whatever method the joiner requests.

Related Documents

70 Chapter 4. Galera Cluster Administration

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• wsrep_sst_donor (page 265)

• wsrep_sst_method (page 267)

• gmcast.segment (page 299)

• mysqldump (page 73)

• rsync (page 75)

• clone (page 76)

• xtrabackup (page 75)

• Logical (page 71)

• Physical (page 74)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_sst_method (page 267)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.2.1 Logical State Snapshot

There is one back-end method available for a Logical State Snapshots: mysqldump.

The Logical State Transfer Method has the following advantages:

• These transfers are available on live servers. In fact, only a fully initialized server can receive a Logical State
Snapshot.

• These transfers do not require the receptor node to have the same configuration as the Donor Node. This allows
you to upgrade storage engine options.

For example, when using this transfer method you can migrate from the Antelope to the Barracuda file format,
use compression resize, or move iblog* files from one partition into another.

The Logical State Transfer Method has the following disadvantages:

• These transfers are as slow as mysqldump.

4.2. State Snapshot Transfers 71

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• These transfers require that you configure the receiving database server to accept root connections from potential
donor nodes.

• The receiving server must have a non-corrupted database.

mysqldump

The main advantage of mysqldump is that you can transfer a state snapshot to a working server. That is, you start
the server standalone and then instruct it to join a cluster from within the database client command line. You can also
use it to migrate from an older database format to a newer one.

mysqldump requires that the receiving node have a fully functional database, which can be empty. It also requires
the same root credentials as the donor and root access from the other nodes.

This transfer method is several times slower than the others on sizable databases, but it may prove faster in cases of
very small databases. For instance, on a database that is smaller than the log files.

Warning: This transfer method is sensitive to the version of mysqldump each node uses. It is not uncommon
for a given cluster to have installed several versions. A State Snapshot Transfer can fail if the version one node
uses is older and incompatible with the newer server.

On occasion, mysqldump is the only option available. For instance, if you upgrade from a cluster using MySQL 5.1
with the built-in InnoDB support to MySQL 5.5, which uses the InnoDB plugin.

The mysqldump script only runs on the sending node. The output from the script gets piped to the MySQL client
that connects to the Joiner Node.

Because mysqldump interfaces through the database client, configuring it requires several steps beyond setting the
wsrep_sst_method (page 267) parameter. For more information on its configuration, see:

For more information on mysqldump, see mysqldump Documentation.

Related Documents

• wsrep_sst_method (page 267)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_sst_method (page 267)

• wsrep_sst_auth (page 265)

• Home

• Docs (page 1)

72 Chapter 4. Galera Cluster Administration

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• KB

• Training

• FAQ

Enabling mysqldump

The Logical State Transfer Method, mysqldump works by interfacing through the database server rather than the
physical data. As such, it requires some additional configuration, besides setting the wsrep_sst_method (page 267)
parameter.

Configuring SST Privileges

In order for mysqldump to interface with the database server, it requires root connections for both the donor and
joiner nodes. You can enable this through the wsrep_sst_auth (page 265) parameter.

Using a text editor, open the wsrep.cnf file–it should be in the /etc/mysql/conf.d/ directory. Add a line like
the following to that file:

wsrep SST Authentication
wsrep_sst_auth = wsrep_sst_username:password

You would use your own authentication parameters in place of wsrep_sst_user and password. This line will
provide authentication information that the node will need to establish connections. Use the same values for every
node in the cluster.

Granting SST Privileges

When the database server starts, it will read from the wsrep.cnf file to get the authentication information it needs
to access another database server. In order for the node to accept connections from the cluster, you must also create
and configure the State Snapshot Transfer user through the database client.

In order to do this, you need to start the database server. If you haven’t used this node on the cluster before, start it
with replication disabled. For servers that use init, execute the following from the command-line:

service mysql start --wsrep-on=off

For servers that use systemd, instead execute this from the command-line:

systemctl start mysql --wsrep-on=OFF

When the database server is running, log into the database using a client and execute the GRANT ALL statement for
the IP address of each node in the cluster. You would do this like so:

GRANT ALL ON *.* TO 'wsrep_sst_user'@'node1_IP_address'
IDENTIFIED BY 'password';

GRANT ALL ON *.* TO 'wsrep_sst_user'@'node2_IP_address'
IDENTIFIED BY 'password';

GRANT ALL ON *.* TO 'wsrep_sst_user'@'node3_IP_address'
IDENTIFIED BY 'password';

You would, of course, modify the text above to use your user names, IP addresses, and passwords. These SQL
statements will grant each node in the cluster access to the database server on this node. You need to run these SQL
statements on each node to allow mysqldump in state transfers among them.

4.2. State Snapshot Transfers 73

Galera Cluster Documentation, Releases 3.x and 4.x

If you have not yet created the cluster, you can stop the database server while you configure the other nodes. To stop
MySQL on servers that use init, run the execute the following from the command-line:

service mysql stop

For servers that use systemd, you would execute the following from the command-line to shutdown MySQL:

systemctl stop mysql

Related Documents

• wsrep_sst_method (page 267)

• wsrep_sst_auth (page 265)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.2.2 Physical State Snapshot

There are two back-end methods available for Physical State Snapshots: rsync and xtrabackup. Starting with
version 8.0.22 also clone method is available for Galera Cluster for MySQL

The Physical State Transfer Method has the following advantages:

• These transfers physically copy the data from one node to the disk of the other, and as such do not need to
interact with the database server at either end.

• These transfers do not require the database to be in working condition, as the Donor Node overwrites what was
previously on the joining node disk.

• These transfers are faster.

The Physical State Transfer Method has the following disadvantages:

• These transfers require the joining node to have the same data directory layout and the same storage engine
configuration as the donor node. For example, you must use the same file-per-table, compression, log file size
and similar settings for InnoDB.

74 Chapter 4. Galera Cluster Administration

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• These transfers are not accepted by servers with initialized storage engines.

What this means is that when your node requires a state snapshot transfer, the database server must restart to
apply the changes. The database server remains inaccessible to the client until the state snapshot transfer is
complete, since it cannot perform authentication without the storage engines.

rsync

The fastest back-end method for State Snapshot Transfers is rsync. It carries all the advantages and disadvantages
of of the Physical Snapshot Transfer. While it does block the donor node during transfer, rsync does not require
database configuration or root access, which makes it easier to configure.

When using terabyte-scale databases, rsync is considerably faster, (1.5 to 2 times faster), than xtrabackup. This
translates to a reduction in transfer times by several hours.

rsync also features the rsync-wan modification, which engages the rsync delta transfer algorithm. However, given
that this makes it more I/O intensive, you should only use it when the network throughput is the bottleneck, which is
usually the case in WAN deployments.

Note: The most common issue encountered with this method is due to incompatibilities between the various versions
of rsync on the donor and joining nodes.

The rsync script runs on both donor and joining nodes. On the joiner, it starts rsync in server-mode and waits for a
connection from the donor. On the donor, it starts rsync in client-mode and sends the contents of the data directory
to the joining node.

wsrep_sst_method = rsync

For more information about rsync, see the rsync Documentation.

xtrabackup

The most popular back-end method for State Snapshot Transfers is xtrabackup. It carries all the advantages and
disadvantages of a Physical State Snapshot, but is virtually non-blocking on the donor node.

xtrabackup only blocks the donor for the short period of time it takes to copy the MyISAM tables, (for instance,
the system tables). If these tables are small, the blocking time remains very short. However, this comes at the cost of
speed: a state snapshot transfer that uses xtrabackup can be considerably slower than one that uses rsync.

Given that xtrabackup copies a large amount of data in the shortest possible time, it may also noticeably degrade
donor performance.

Note: The most common issue encountered with this method is due to its configuration. xtrabackup requires that
you set certain options in the configuration file, which means having local root access to the donor server.

[mysqld]
wsrep_sst_auth = <SST user>:<SST password>
wsrep_sst_method = xtrabackup-v2
datadir = /path/to/datadir

Minimal setup for the xtrabackup SST user:

4.2. State Snapshot Transfers 75

https://rsync.samba.org/

Galera Cluster Documentation, Releases 3.x and 4.x

mysql> CREATE USER '<SST user>'@'localhost' IDENTIFIED BY '<SST password>';
mysql> GRANT BACKUP_ADMIN, PROCESS, RELOAD ON *.* TO '<SST user>'@'localhost';
mysql> GRANT SELECT ON performance_schema.keyring_component_status TO '<SST user>'@
→˓'localhost' ;
mysql> GRANT SELECT ON performance_schema.log_status TO '<SST user>'@'localhost' ;

For more information on xtrabackup, see the Percona XtraBackup User Manual and XtraBackup SST Configura-
tion.

clone

Starting with version 8.0.22 clone SST method is available for Galera Cluster for MySQL. It is based on the na-
tive MySQL clone plugin. As of 8.4.2, it is the default value for SST methods. It proved to be much faster than
xtrabackup, however it will block Donor node on DDL execution if that happens during the transfer.

As of MySQL-wsrep 8.0.27-26.9, progress reporting is also available for the clone SST method. See also Scriptable
State Snapshot Transfers (page 77).

Basic configuration for clone SST on Joiner:

[mysqld]
wsrep_sst_method=clone

Basic server configuration for clone SST on Donor:

[mysqld]
wsrep_sst_auth=<SST user>:<SST password>

Minimal setup for the clone SST user:

mysql> CREATE USER '<SST user>'@'localhost' IDENTIFIED BY '<SST password>';
mysql> GRANT CREATE USER, SUPER ON *.* TO '<SST user>'@'localhost';
mysql> GRANT INSERT, DELETE ON mysql.plugin TO '<SST user>'@'localhost';
mysql> GRANT UPDATE ON performance_schema.setup_instruments TO '<SST user>'@'localhost
→˓';
mysql> GRANT UPDATE ON performance_schema.setup_consumers TO '<SST user>'@'localhost';
mysql> GRANT BACKUP_ADMIN ON *.* TO '<SST user>'@'localhost' WITH GRANT OPTION;
mysql> GRANT EXECUTE ON *.* TO '<SST user>'@'localhost' WITH GRANT OPTION;
mysql> GRANT SELECT ON performance_schema.* TO '<SST user>'@'localhost' WITH GRANT
→˓OPTION;

Optionally plugin_dir variable needs to be configured if MySQL plugins are not in the default location.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

76 Chapter 4. Galera Cluster Administration

https://www.percona.com/doc/percona-xtrabackup/2.1/manual.html?id=percona-xtrabackup:xtrabackup_manual
https://www.percona.com/doc/percona-xtradb-cluster/5.6/manual/xtrabackup_sst.html
https://www.percona.com/doc/percona-xtradb-cluster/5.6/manual/xtrabackup_sst.html

Galera Cluster Documentation, Releases 3.x and 4.x

Related Documents

• wsrep_sst_receive_address (page 268)

• wsrep_sst_auth (page 265)

• wsrep_sst_method (page 267)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.3 Scriptable State Snapshot Transfers

When a node sends and receives a State Snapshot Transfer, it manage it through processes that run external to the
database server. If you need more from these processes than the default behavior provides, Galera Cluster provides an
interface for custom shell scripts to manage state snapshot transfers on the node.

Using the Common SST Script

Galera Cluster includes a common script for managing a State Snapshot Transfer, which you can use as a starting point
in building your own custom script. The filename is wsrep_sst_common. For Linux users, the package manager
typically installs it for you in /usr/bin.

The common SST script provides ready functions for parsing argument lists, logging errors, and so on. There are no
constraints on the order or number of parameters it takes. You can add new parameters and ignore any of the existing
ones as you prefer.

It assumes that the storage engine initialization on the receiving node takes place only after the state transfer is com-
plete. Meaning that it copies the contents of the source data directory to the destination data directory (with possible
variations).

State Transfer Script Parameters

When Galera Cluster starts an external process for state snapshot transfers, it passes a number of parameters to the
script, which you can use in configuring your own state transfer script.

General Parameters

These parameters are passed to all state transfer scripts, regardless of method or whether the node is sending or
receiving:

--role The script is given a string, either donor or joiner, to indicate whether the node is using it to send or
receive a state snapshot transfer.

--address The script is given the IP address of the Joiner Node.

When the script is run by the joiner, the node uses the value of either the wsrep_sst_receive_address (page 268)
parameter or a sensible default formatted as <ip_address>:<port>. When the script is run by the donor, the
node uses the value from the state transfer request.

4.3. Scriptable State Snapshot Transfers 77

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

--auth The script is given the node authentication information.

When the script is run by the joiner, the node uses the value given to the wsrep_sst_auth (page 265) parameter. When
the script is run by the donor, it uses the value given by the state transfer request.

--datadir The script is given the path to the data directory. The value is drawn from the
mysql_real_data_home parameter.

--defaults-file The script is given the path to the my.cnf configuration file.

The values the node passes to these parameters varies depending on whether the node calls the script to send or receive
a state snapshot transfer. For more information, see Calling Conventions (page 78) below.

Donor-specific Parameters

These parameters are passed only to state transfer scripts initiated by a node serving as the Donor Node, regardless of
the method being used:

--gtid The node gives the Global Transaction ID, which it forms from the state UUID and the sequence number, or
seqno, of the last committed transaction.

--socket The node gives the local server socket for communications, if required.

--bypass The node specifies whether the script should skip the actual data transfer and only pass the Global Trans-
action ID to the receiving node. That is, whether the node should initiate an Incremental State Transfer.

Logical State Transfer-specific Parameters

These parameters are passed only to the wsrep_sst_mysqldump state transfer script by both the sending and
receiving nodes:

--user The node gives to the script the database user, which the script then uses to connect to both donor and joiner
database servers. Meaning, this user must be the same on both servers, as defined by the wsrep_sst_auth (page 265)
parameter.

--password The node gives to the script the password for the database user, as configured by the wsrep_sst_auth
(page 265) parameter.

--host The node gives to the script the IP address of the joiner node.

--port The node gives to the script the port number to use with the joiner node.

--local-port The node gives to the script the port number to use in sending the state transfer.

Calling Conventions

In writing your own custom script for state snapshot transfers, there are certain conventions that you need to follow in
order to accommodate how Galera Cluster calls the script.

Receiver

When the node calls for a state snapshot transfer as a joiner, it begins by passing a number of arguments to the state
transfer script, as defined in General Parameters (page 77) above. For your own script you can choose to use or ignore
these arguments as suits your needs.

After the script receives these arguments, prepare the node to accept a state snapshot transfer. For example, in the case
of wsrep_sst_rsync, the script starts rsync in server mode.

78 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

To signal that the node is ready to receive the state transfer, print the following string to standard output: ready
<address>:port\n. Use the IP address and port at which the node is waiting for the state snapshot. For example:

ready 192.168.1.1:4444

The node responds by sending a state transfer request to the donor node. The node forms the request with the address
and port number of the joiner node, the values given to wsrep_sst_auth (page 265), and the name of your script. The
donor receives the request and uses these values as input parameters in running your script on that node to send back
the state transfer.

When the joiner node receives the state transfer and finishes applying it, print to standard output the Global Transaction
ID of the received state. For example:

e2c9a15e-5485-11e0-0800-6bbb637e7211:8823450456

Then exit the script with a 0 status, to indicate that the state transfer was successful.

Sender

When the node calls for a state snapshot transfer as a donor, it begins by passing a number of arguments to the state
transfer script, as defined in General Parameters (page 77) above. For your own script, you can choose to use or ignore
these arguments as suits your needs.

While your script runs, Galera Cluster accepts the following signals. You can trigger them by printing to standard
output:

flush tables\n Optional signal that asks the database server to run FLUSH TABLES. When complete, the
database server creates a tables_flushed file in the data directory.

continue\n Optional signal that tells the database server that it can continue to commit transactions.

Progress reporting is also enabled for the clone SST method.

done\n Mandatory signal that tells the database server that the state transfer is complete and successful.

After your script sends the done\n signal, exit with a 0 return code.

In the event of failure, Galera Cluster expects your script to return a code that corresponds to the error it encountered.
The donor node returns this code to the joiner through group communication. Given that its data directory now holds
an inconsistent state, the joiner node then leaves the cluster and aborts the state transfer.

Note: Without the continue\n signal, your script runs in Total Order Isolation, which guarantees that no further
commits occur until the script exits.

The script outputs control messages to the standard output, from where they are read by the parent mysqld process.
These are:

• total\n This progress reporting parameter indicates the new SST stage and repor-ts the estimated total work.

• complete\n This progress reporting parameter reports the work completed so far.

Enabling Scriptable SST’s

Whether you use wsrep_sst_common directly or decide to write a script of your own from scratch, the process
for enabling it remains the same. The filename must follow the convention of wsrep_sst_<name>, with <name>
being the value that you give for the wsrep_sst_method (page 267) parameter in the configuration file.

4.3. Scriptable State Snapshot Transfers 79

Galera Cluster Documentation, Releases 3.x and 4.x

For example, if you write a script with the filename wsrep_sst_galera-sst, you would add the following line
to your my.cnf:

wsrep_sst_method = galera-sst

When the node starts, it uses your custom script for state snapshot transfers.

Related Documents

• wsrep_sst_receive_address (page 268)

• wsrep_sst_auth (page 265)

• wsrep_sst_method (page 267)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.4 Galera System Tables

Starting with version 4 of Galera, three system tables related to Galera replication were added to the mysql database:
wsrep_cluster, wsrep_cluster_members, and wsrep_streaming_log. As of MariaDB Server 10.10,
and MySQL-wsrep 8.4.2, there is yet another, wsrep_allowlist. These system tables may be used by database
administrators to get a sense of the current layout of the nodes in a cluster.

To see these tables on your server, execute the following SQL statement one of them using the mysql client or a
similar client:

SHOW TABLES FROM mysql LIKE 'wsrep%';

+---------------------------+
| Tables_in_mysql (wsrep%) |
+---------------------------+
| wsrep_allowlist |
| wsrep_cluster |
| wsrep_cluster_members |
| wsrep_streaming_log |
+---------------------------+

80 Chapter 4. Galera Cluster Administration

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Database administrators and clients with the access to the mysql database may read these tables, but they may not
modify them: the database itself will make modifications, as needed. If your server does not have these tables, it may
be that your server is using an older version of Galera.

Allowlist

The wsrep_allowlist table stores the allowed IP addresses that can perform an IST/SST, in a comma delimited
format. Before the introduction of “wsrep_allowlist”, as long as a node has access to Galera Cluster TCP ports, it can
make an SST/IST request, without authentication being performed; some users prefer to have a method to make this
more robust, and secure, hence with wsrep_allowlist only if the JOINER node is in the IP list, will it be allowed
to join the cluster.

You can either have IPv4 or IPv6 addresses for wsrep_allowlist, but it does not allow wildcard IPs or hostnames.

MariaDB [mysql]> describe wsrep_allowlist\G

*************************** 1. row ***************************
Field: ip
Type: char(64)
Null: NO
Key: PRI
Default: NULL
Extra:
1 row in set (0.001 sec)

To alter the allowlist, execute command:

insert into mysql.wsrep_allowlist(ip) values('18.193.102.155');

and the result will look like:

MariaDB [mysql]> select * from wsrep_allowlist;
+----------------+
| ip |
+----------------+
| 18.193.102.155 |
| 18.194.147.243 |
+----------------+
2 rows in set (0.000 sec)

When another node tries to get connected, the potential DONOR nodes will see this in the error.log:

2024-03-18 8:19:02 0 [Warning] WSREP: Connection not allowed, IP 3.70.155.51 not
→˓found in allowlist.

On the node trying to be the JOINER not in the allowlist, an error such as the one below should be easily notable:

2024-03-18 8:19:14 0 [ERROR] WSREP: failed to open gcomm backend connection: 110:
→˓failed to reach primary view: 110 (Connection timed out) at ./gcomm/src/pc.
→˓cpp:connect():160
2024-03-18 8:19:14 0 [ERROR] WSREP: ./gcs/src/gcs_core.cpp:gcs_core_open():221:
→˓Failed to open backend connection: -110 (Connection timed out)
2024-03-18 8:19:15 0 [ERROR] WSREP: ./gcs/src/gcs.cpp:gcs_open():1674: Failed to
→˓open channel 'mariadb' at 'gcomm://18.194.147.243,18.193.102.155': -110 (Connection
→˓timed out)
2024-03-18 8:19:15 0 [ERROR] WSREP: gcs connect failed: Connection timed out

Add the remaining node to the allowlist to fix this:

4.4. Galera System Tables 81

Galera Cluster Documentation, Releases 3.x and 4.x

MariaDB [mysql]> insert into mysql.wsrep_allowlist(ip) values('3.70.155.51');
Query OK, 1 row affected (0.002 sec)

MariaDB [mysql]> select * from wsrep_allowlist;
+----------------+
| ip |
+----------------+
| 18.193.102.155 |
| 18.194.147.243 |
| 3.70.155.51 |
+----------------+
3 rows in set (0.000 sec)

And now we are back to having a three-node Galera Cluster.

Cluster View

One of the new Galera related system tables is the wsrep_cluster table. This new table, starting in version 4
of Galera, contains a current view of the cluster. That is to say, it stores the UUID of the cluster and some other
identification information, as well as the cluster’s capabilities.

To see the names of the columns in this table, either use the DESCRIBE statement or execute the following SQL
statement from the mysql client on one of the nodes in the cluster:

SELECT COLUMN_NAME FROM information_schema.columns
WHERE table_schema='mysql'
AND table_name='wsrep_cluster';

+------------------+
| COLUMN_NAME |
+------------------+
| cluster_uuid |
| view_id |
| view_seqno |
| protocol_version |
| capabilities |
+------------------+

The cluster_uuid contains the UUID of the cluster.

The view_id corresponds to the status value of the wsrep_cluster_conf_id, the number of cluster config-
uration changes which have occurred in the cluster. The view_seqno on the other hand, corresponds to Galera
sequence number associated with the cluster view. The protocol version is the same value as contained in the
wsrep_protocol_version variable. It is the protocol version of the MySQL-wsrep or the MariaDB wsrep
patch. Last, the capabilities column contains the capabilities bitmask provided by the Galera library. It is
metadata that is needed to recover node state during crash recovery.

If you execute the following SQL statement from any node in a cluster, you can see the contents of this table:

SELECT * FROM mysql.wsrep_cluster \G

*************************** 1. row ***************************
cluster_uuid: bd5fe1c3-7d80-11e9-8913-4f209d688a15

view_id: 3
view_seqno: 2956

protocol_version: 4
capabilities: 184703

82 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

In the results here, you can see the cluster UUID. This can also be found by using the SQL statement, SHOW STATUS
for the variable, wsrep_local_state_uuid.

Cluster Members

Another Galera related system tables is the wsrep_cluster_members table. This system table will provide the
current membership of the cluster; it will contain a row for each node in the cluster. That is to say, each node in the
cluster known to the node upon which the table is queried.

To see the names of columns in this table, either use the DESCRIBE statement or execute the following SQL statement
from the mysql client on one of the nodes in the cluster:

SELECT COLUMN_NAME FROM information_schema.columns
WHERE table_schema='mysql'
AND table_name='wsrep_cluster_members';

+-----------------------+
| COLUMN_NAME |
+-----------------------+
| node_uuid |
| cluster_uuid |
| node_name |
| node_incoming_address |
+-----------------------+

The node_uuid records the UUID of each node in the cluster. The cluster_uuid is the UUID of the cluster for
which the node belongs–the one on which the table has been queried. This is currently the same as what’s contained
in the wsrep_cluster table. The node_name contains the human readable name of each node, Last, the
node_incoming_address stores the IP address and port on which each node is listening for client connections.

If you execute the following SQL statement from any node in a cluster, you can see the contents of this table:

SELECT * FROM mysql.wsrep_cluster_members ORDER BY node_name \G

*************************** 1. row ***************************
node_uuid: e39d1774-7e2b-11e9-b5b2-7696f81d30fb

cluster_uuid: bd5fe1c3-7d80-11e9-8913-4f209d688a15
node_name: galera1

node_incoming_address: AUTO

*************************** 2. row ***************************
node_uuid: eb8fc512-7e2b-11e9-bb74-3281cf207f60

cluster_uuid: bd5fe1c3-7d80-11e9-8913-4f209d688a15
node_name: galera2

node_incoming_address: AUTO

*************************** 3. row ***************************
node_uuid: 2347a8ac-7e2c-11e9-b6f0-da90a2d0a563

cluster_uuid: bd5fe1c3-7d80-11e9-8913-4f209d688a15
node_name: galera3

node_incoming_address: AUTO

In the results of this example you can see that this cluster is composed of three nodes. The node UUIDs are unique
for each node. Notice that the cluster UUID is the same for all three and corresponds to the related value found in the
wsrep_cluster table shown in the example earlier. Each node has a unique name (for example, galera1). They
were named in the configuration file using the wsrep_node_name parameter. The incoming node address is set to
AUTO for all of these nodes, but they can be set individual to specific nodes with the wsrep-node-address or the
bind-address parameter in each node’s configuration file.

4.4. Galera System Tables 83

Galera Cluster Documentation, Releases 3.x and 4.x

Cluster Streaming Log

The last Galera related system tables is the wsrep_streaming_log table. This system table contains meta data
and row events for ongoing streaming transactions, write set fragment per row.

The node_uuid column contains the node UUID of the hosting node for the transaction (that is node where the
client is executing the transaction). The trx_id column stores the transaction identifier, whereas the seqno stores
the sequence number of the write set fragment. Last, the flags columns records flags associated with the write set
fragment, and frag contains the binary log replication events contained in the write set fragment.

To see the names of columns in this table, either use the DESCRIBE statement or execute the following SQL statement
from the mysql client on one of the nodes in the cluster:

SELECT COLUMN_NAME FROM information_schema.columns
WHERE table_schema='mysql'
AND table_name='wsrep_streaming_log';

+-------------+
| COLUMN_NAME |
+-------------+
| node_uuid |
| trx_id |
| seqno |
| flags |
| frag |
+-------------+

If you execute the following SQL statement from any node in a cluster, you can see the contents of this table:

SELECT * FROM mysql.wsrep_streaming_log \G

Typically, you won’t see any results since it will contain entries only for transactions which have streaming replication
enabled. For example:

CREATE TABLE table1 (col1 INT PRIMARY KEY);

SET SESSION wsrep_trx_fragment_size=1;

START TRANSACTION;

INSERT INTO table1 VALUES (100);

SELECT node_uuid, trx_id, seqno, flags
FROM mysql.wsrep_streaming_log;

+--------------------------------------+--------+-------+-------+
| node_uuid | trx_id | seqno | flags |
+--------------------------------------+--------+-------+-------+
| a006244a-7ed8-11e9-bf00-867215999c7c | 26 | 4 | 1 |
+--------------------------------------+--------+-------+-------+

You can see in the results from the example here that the node UUID matches that of the third node (that is, galera3)
in the results for the example above related to the wsrep_cluster_members table. In this example, the frag
column was omitted from the SELECT statement since it contains binary characters that do not format well.

Note: Galera Cluster no longer uses INFORMATION_SCHEMA.PROCESSLIST, since it has been deprecated up-
stream. Instead, it uses “PERFORMANCE_SCHEMA.PROCESSLIST”. See the example below:

84 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

SET GLOBAL wsrep_applier_threads = 10;
SELECT COUNT(*) AS EXPECT_10 FROM performance_schema.threads WHERE NAME = 'thread/sql/
→˓wsrep_applier_thread';

Or:

SELECT COUNT(*) IN (1, 2) FROM performance_schema.processlist WHERE USER = 'system
→˓user' AND STATE LIKE '%committed%';

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Total Order Isolation (page 86)

• Rolling Schema Upgrade (page 86)

– Non-Blocking Operations (page 87)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.5 Schema Upgrades

Schema changes are of particular interest related to Galara Cluster. Schema changes are DDL (Data Definition Lan-
guage) statement executed on a database (for example, CREATE TABLE, GRANT). These DDL statements change
the database itself and are non-transactional.

Galera Cluster processes schema changes by three different methods:

• Total Order Isolation (page 86): Abbreviated as TOI, these are schema changes made on all cluster nodes in the
same total order sequence, preventing other transactions from committing for the duration of the operation.

• Rolling Schema Upgrade (page 86) Known also as RSU, these are schema changes run locally, affecting only
the node on which they are run. The changes do not replicate to the rest of the cluster.

• Non-Blocking Operations (page 87): Abbreviated as NBO, these are schema changes made on all cluster nodes
in the same total order sequence, preventing other transactions from committing for the duration of the operation,
with much more efficient locking strategy that the TOI method.

4.5. Schema Upgrades 85

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

You can set the method for online schema changes by using the wsrep_OSU_method parameter in the configuration
file, (my.ini or my.cnf`, depending on your build) or through the ``mysql client. Galera
Cluster defaults to the Total Order Isolation method.

Note: If you are using Galera Cluster for Percona XtraDB Cluster, see the the pt-online-schema-change in the Percona
Toolkit.

Total Order Isolation

When you want an online schema change to replicate through the cluster and do not care that other transactions will
be blocked while the cluster processes the DDL statements, use the Total Order Isolation method. You can do this
with a global SET statement, as follows:

SET GLOBAL wsrep_OSU_method='TOI';

The GLOBAL command does not change the “wsrep_OSU_method” for the running session. If you want to change it
for the running session, use the session-based SET statement, as follows:

SET SESSION wsrep_OSU_method='TOI';

In Total Order Isolation, queries that change the schema replicate as statements to all nodes in the cluster. The nodes
wait for all preceding transactions to commit simultaneously, then they execute the schema change in isolation. For
the duration of the DDL processing, no other transactions can commit.

The main advantage of Total Order Isolation is its simplicity and predictability, which guarantees data consistency.
Additionally, when using Total Order Isolation, you should take the following particularities into consideration:

• From the perspective of certification, schema upgrades in Total Order Isolation never conflict with preceding
transactions, given that they only execute after the cluster commits all preceding transactions. What this means
is that the certification interval for schema changes using this method has a zero length. Therefore, schema
changes will never fail certification and their execution is guaranteed.

• Transactions that were in progress while the DDL was running and that involved the same database resource
will get a deadlock error at commit time and will be rolled back.

• The cluster replicates the schema change query as a statement before its execution. There is no way to know
whether or not individual nodes succeed in processing the query. This prevents error checking on schema
changes in Total Order Isolation.

Rolling Schema Upgrade

When you want to maintain high-availability during schema upgrades and can avoid conflicts between new and old
schema definitions, use the Rolling Schema Upgrade method. You can do this with a global SET statement, as follows:

SET GLOBAL wsrep_OSU_method='RSU';

The GLOBAL command does not change the “wsrep_OSU_method” for the running session. If you want to change it
for the running session, use the session-based SET statement, as follows:

SET SESSION wsrep_OSU_method='RSU';

In Rolling Schema Upgrade, queries that change the schema are only processed on the local node. While the node
processes the schema change, it desynchronizes with the cluster. When it finishes processing the schema change, it
applies delayed replication events and synchronizes itself with the cluster.

86 Chapter 4. Galera Cluster Administration

https://www.percona.com/doc/percona-toolkit/3.0/pt-online-schema-change.html

Galera Cluster Documentation, Releases 3.x and 4.x

To change a schema cluster-wide, you must manually execute the query on each node in turn. Bear in mind that during
a rolling schema change the cluster continues to operate, with some nodes using the old schema structure while others
use the new schema structure.

The main advantage of the Rolling Schema Upgrade is that it only blocks one node at a time. The main disadvantage
of the Rolling Schema Upgrade is that it is potentially unsafe, and may fail if the new and old schema definitions are
incompatible at the replication event level.

Non-Blocking Operations (this feature is part of Galera Cluster Enterprise Edition)

When you want an online schema change to replicate through the cluster, but are worried that long-running DDL
statements block cluster updates, use the Non-Blocking Operations method. You can do this with a global SET
statement, as follows:

SET GLOBAL wsrep_OSU_method='NBO';

The GLOBAL command does not change the “wsrep_OSU_method” for the running session. If you want to change it
for the running session, use the session-based SET statement, as follows:

SET SESSION wsrep_OSU_method='NBO';

The NBO method resembles the TOI method. Queries that change the schema replicate as statements to all nodes
in the cluster. The nodes wait for all preceding transactions to commit simultaneously, then they execute the schema
change in isolation. For the duration of the DDL processing, no other transactions can commit.

The main advantage of Non-Blocking Operations is that it significantly reduces the impact of DDL statements on the
cluster. During DDL processing:

• You can alter another table, using NBO

• You can continue inserting data, excluding the table(s) you are altering

• If one node crashes, the operation will continue on the other nodes, and if successful it will persist

When using Non-Blocking Operations, take the following particularities into consideration:

• The supported statements are:

– ALTER TABLE table_name LOCK = {SHARED|EXCLUSIVE} , alter_specification

– ALTER TABLE table_name LOCK = {SHARED|EXCLUSIVE} PARTITION. The comma after
LOCK=SHARED|EXCLUSIVE is not used for partition-management ALTERs.

– ANALYZE TABLE

– OPTIMIZE TABLE

• The unsupported statements are:

– ALTER TABLE LOCK = {DEFAULT|NONE}. This also means that ALTER TABLE without a LOCK
clause is not supported, as is defaults to DEFAULT.

– CREATE

– RENAME

– DROP

– REPAIR

• As some DDL statements, such as CREATE without a LOCK argument, return an error, it is not recommended
to use NBO on a server-wide basis. Only use it for sessions that run compatible DDL statements.

4.5. Schema Upgrades 87

Galera Cluster Documentation, Releases 3.x and 4.x

• You cannot perform writes on a table that is being altered under NBO. Write attempts are blocked, until the
ALTER is complete. Under LOCK=SHARED, reading from the table is allowed. Under LOCK=EXCLUSIVE,
read operations are also blocked.

• Locking the tables at the beginning of the operation is a blocking operation. The cluster may block, if there
is an ongoing long transaction against the table being altered. To avoid this, ensure that no clients have open
transactions that include the table, prior to running the ALTER statement.

• While a DDL operation is running, nodes cannot be donors for SST. Thus, a node cannot join or rejoin the
cluster using SST while an NBO DDL is in progress.

• If a node leaves the cluster while an NBO DDL operation is in progress, its data files will be inconsistent and it
can only rejoin the cluster through SST, not IST.

• If a DDL statement is expected to take one hour, SST will not be available for one hour, only IST. Set a high-
enough value for the gcache.size so that there is sufficient cached data to use IST.

• Do not use NBO with statements that operate on more than one table at a time.

• Do not perform online schema upgrades using the RSU method while a statement is running under the NBO
method.

Warning: To avoid conflicts between new and old schema definitions, execute SQL statements such as CREATE
TABLE and DROP TABLE using the Total Order Isolation (page 86) method.

Note: Contact Codership sales at sales@galeracluster.com for more information, and to get the Galera Cluster
Enterprise Edition software.

Related Documents

• Total Order Isolation (page 86)

• Rolling Schema Upgrade (page 86)

• Non-Blocking Operations (page 87)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Rolling Upgrade (page 89)

• Bulk Upgrade (page 91)

• Provider Upgrade (page 91)

• gcache.size (page 293)

88 Chapter 4. Galera Cluster Administration

mailto:sales@galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.6 Upgrading Galera Cluster

Since high-availability is a priority for many Galera Cluster administrators, how to go about upgrading the nodes is
important. Doing so with the least amount of downtime is tricky. There are three methods for upgrading Galera
Cluster, the Galera software on the individual nodes:

• Rolling Upgrade (page 89) permits you to upgrade one node at a time, without taking down the cluster—and
newly upgraded nodes can join the cluster without problems.

• Bulk Upgrade (page 91) is the method by which you take down the cluster and upgrade all of the nodes together.

• Provider Upgrade (page 91) is a method in which you only upgrade the Galera Replication Plugin on each node.

There are advantages and disadvantages to each of these methods. For instance, while a rolling upgrade may prove
time consuming, the cluster continues to run during the upgrades. Similarly, while a bulk upgrade is faster, depending
on on your situation, problems can result from taking down the cluster for a longer period of time. You will have to
choose the best method for your situation, needs and concerns.

Rolling Upgrade

When you need the cluster to remain live and do not mind the time it takes to upgrade each node, use rolling upgrades.

In rolling upgrades, you take each node down individually, upgrade its software and then restart the node. When the
node reconnects, it brings itself back into sync with the cluster, as it would in the event of any other outage. Once the
individual finishes syncing with the cluster, you can move to the next in the cluster.

The main advantage of a rolling upgrade is that in the even that something goes wrong with the upgrade, the other
nodes remain operational, giving you time to troubleshoot the problem.

Some of the disadvantages to consider in rolling upgrades are:

Time Consumption Performing a rolling upgrade can take some time, longer depending on the size of the databases
and the number of nodes in the cluster, during which the cluster operates at a diminished capacity.

Unless you use Incremental State Transfer, as you bring each node back online after an upgrade, it initiates a full State
Snapshot Transfer, which can take a long time to process on larger databases and slower state transfer methods.

During the State Snapshot Transfer, the node continues to accumulate catch-up in the replication event queue, which
it will then have to replay to synchronize with the cluster. At the same time, the cluster is operational and continues to
add further replication events to the queue.

Blocking Nodes When the node comes back online, if you use mysqldump for State Snapshot Transfers, the Donor
Node remains blocked for the duration of the transfer. In practice, this means that the cluster is short two nodes for the
duration of the state transfer, one for the donor node and one for the node in catch-up.

4.6. Upgrading Galera Cluster 89

https://galeracluster.com
https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

Using xtrabackup or rsync with the LVM state transfer methods, you can avoid blocking the donor, but doing so
may slow the donor node down.

Depending on the load balancing mechanism, you may have to configure the load balancer not to direct requests at
joining and donating nodes.

Cluster Availability Taking down nodes for a rolling upgrade can greatly diminish cluster performance or availability,
such as if there are too few nodes in the cluster to begin with or where the cluster is operating at its maximum capacity.

In such cases, losing access to two nodes during a rolling upgrade can create situations where the cluster can no longer
serve all requests made of it or where the execution times of each request increase to the point where services become
less available.

Cluster Performance Each node you bring up after an upgrade, diminishes cluster performance until the node buffer
pool warms back up. Parallel applying can help with this.

Rolling Upgrade Procedure

Assuming you’ve read and considered the above, below are the steps for upgrading each node in a cluster—one at a
time. This procedure, though, is for minor upgrades, not major upgrades. For those, see the next section.

• First, transfer all client connections from the node you are about to upgrade to the other nodes.

• When there are no more client connections trying to access the node, shut down the database software (that is,
mysqld). This will remove the node from the cluster.

• Now use the method you prefer to upgrade the software. A package management utility such as yum, or
whatever is appropriate for the your operating system distribution.

• When you’ve finished updating the database and Galera software, start the node. Check that it has successfully
joined the cluster and finished synchronizing before beginning the process to upgrade another node in the cluster.

Tip: If you upgrade a node that will be part of a weighted Quorum, set the initial node weight to zero. This guarantees
that if the joining node should fail before it finishes synchronizing, it won’t affect any quorum computations that follow.

Rolling Upgrades of Major Versions of Galera Cluster

Performing a rolling upgrade between major versions of Galera Cluster (for example, from 8.0 to 8.4) has certain
additional limitations. Below is a list of them; you should consider these factors.

SST is not supported between nodes of different major versions. Therefore, nodes of different major versions should
not coexist in the same cluster for longer than necessary to perform the upgrade;

Prior to performing the upgrade, ensure that the gcache.size (page 293) provider option on all nodes is sized so that it
can provide IST for the expected duration of the upgrade;

While the cluster contains nodes of multiple versions, avoid running any statements that are only supported in a
particular version or statements that have different effect in different versions. For example, do not run DDL statements
that are only available in the newer version.

Rolling Major Upgrade Procedure

Below are the steps of the following procedure for performing rolling upgrades between major versions of Galera
Cluster.

90 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

• Choose one node to upgrade and make sure that all client connections are directed elsewhere. Once it is free of
its cluster obligations, shut down the database daemon (fir example, mysqld).

• Edit the database configuration file (that is, my.cnf) and temporarily comment out the wsrep_provider
line. This will prevent the node from attempting to rejoin the cluster during the package upgrade process.

• Uninstall all existing mysql-wsrep packages and install the new packages using a package manager (for
example, yum)

• Start the mysqld daemon—without connecting to the cluster—and then run the mysql_upgrade script, if it
wasn’t run automatically as part of package installation.

• Last, restore the wsrep_provider line in the database configuration and restart the mysqld daemon.

Bulk Upgrade

When you want to avoid time-consuming state transfers and the slow process of upgrading each node, one at a time,
use a bulk upgrade.

In bulk upgrades, you take all of the nodes down in an idle cluster, perform the upgrades, then bring the cluster back
online. This allows you to upgrade your cluster quickly, but does mean a complete service outage for your cluster.

Warning: Always use bulk upgrades when using a two-node cluster, as the rolling upgrade would result in a
much longer service outage.

The main advantage of bulk upgrade is that when you are working with huge databases, it is much faster and results
in better availability than rolling upgrades.

The main disadvantage is that it relies on the upgrade and restart being quick. Shutting down InnoDB may take a few
minutes as it flushes dirty pages. If something goes wrong during the upgrade, there is little time to troubleshoot and
fix the problem.

Note: To minimize any issues that might arise from an upgrade, do not upgrade all of the nodes at once. Rather, run
the upgrade on a single node first. If it runs without issue, upgrade the rest of the cluster.

To perform a bulk upgrade on Galera Cluster, complete the following steps:

1. Stop all load on the cluster

2. Shut down all the nodes

3. Upgrade software

4. Restart the nodes. The nodes will merge to the cluster without state transfers, in a matter of seconds.

5. Resume the load on the cluster

Note: You can carry out steps 2-3-4 on all nodes in parallel, therefore reducing the service outage time to virtually
the time needed for a single server restart.

Provider-Only Upgrade

When you only need to upgrade the Galera provider, you can further optimize the bulk upgrade to only take a few
seconds.

4.6. Upgrading Galera Cluster 91

Galera Cluster Documentation, Releases 3.x and 4.x

Important: In provider-only upgrade, the warmed up InnoDB buffer pool is fully preserved and the cluster continues
to operate at full speed as soon as you resume the load.

Upgrading Galera Replication Plugin

If you installed Galera Cluster for MySQL using the binary package from the Codership repository, you can upgrade
the Galera Replication Plugin through your package manager..

To upgrade the Galera Replicator Plugin on an RPM-based Linux distribution, run the following command for each
node in the cluster:

$ yum update galera

To upgrade the Galera Replicator Plugin on a Debian-based Linux distribution, run the following commands for each
node in the cluster:

$ apt-get update
$ apt-get upgrade galera

When apt-get or yum finish, you will have the latest version of the Galera Replicator Plugin available on the node.
Once this process is complete, you can move on to updating the cluster to use the newer version of the plugin.

Updating Galera Cluster

After you upgrade the Galera Replicator Plugin package on each node in the cluster, you need to run a bulk upgrade
to switch the cluster over to the newer version of the plugin.

1. Stop all load on the cluster.

2. For each node in the cluster, issue the following queries:

SET GLOBAL wsrep_provider='none';
SET GLOBAL wsrep_provider='/usr/lib64/galera/libgalera_smm.so';

3. One any one node in the cluster, issue the following query:

SET GLOBAL wsrep_cluster_address='gcomm://';

4. For every other node in the cluster, issue the following query:

SET GLOBAL wsrep_cluster_address='gcomm://node1addr';

For node1addr, use the address of the node in step 3.

5. Resume the load on the cluster.

Reloading the provider and connecting it to the cluster typically takes less than ten seconds, so there is virtually no
service outage.

Related Documents

• Rolling Upgrade (page 89)

• Bulk Upgrade (page 91)

• Provider Upgrade (page 91)

92 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

• gcache.size (page 293)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• pc.recovery (page 301)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.7 Recovering Primary Component

Cluster nodes can store the Primary Component state to disk. The node records the state of the Primary Component
and the UUID’s of the nodes connected to it. In the event of an outage, once all nodes that were part of the last saved
state achieve connectivity, the cluster recovers the Primary Component.

If the write-set position differs between the nodes, the recovery process also requires a full state snapshot transfer.

For more information on this feature, see the pc.recovery (page 301) parameter. By default, it is enabled as of version
3.6.

Understanding the Primary Component State

When a node stores the Primary Component state to disk, it saves it as the gvwstate.dat file. You’ll find this file
in the database data directory on the server which is acting as the Primary Component.

The node creates and updates this file when the cluster forms or changes the Primary Component. This ensures that
the node retains the latest Primary Component state that it was in. If the node loses connectivity, it has the file to
reference.

If the node shuts down gracefully, it deletes the file. If the cluster continues after the node has shutdown (that is, there
are other nodes that did not shutdown), one of the remaining nodes will become the host to the Primary Component
and will create the gvwstate.dat file on its file system.

Below is an example of the contents of the gvwstate.dat file:

4.7. Recovering Primary Component 93

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

my_uuid: d3124bc8-1605-11e4-aa3d-ab44303c044a
#vwbeg
view_id: 3 0dae1307-1606-11e4-aa94-5255b1455aa0 12
bootstrap: 0
member: 0dae1307-1606-11e4-aa94-5255b1455aa0 1
member: 47bbe2e2-1606-11e4-8593-2a6d8335bc79 1
member: d3124bc8-1605-11e4-aa3d-ab44303c044a 1
#vwend

The gvwstate.dat file is composed of two parts. Node Information provides the node’s UUID, in the my_uuid
field. View Information provides information on the node’s view of the Primary Component, contained between the
#vwbeg and #vwend tags.

The view_id forms an identifier for the view from three parts: view_type, which always gives a value of 3 to indicate
the primary view; and the view_uuid and view_seq together form a unique value for the identifier.

The bootstrap variable indicates whether or not the node is bootstrapped. It does not, though, effect the Pri-
mary Component recovery process. The member variables contain the UUID’s of nodes connecting to the Primary
Component.

Modifying the Saved Primary Component State

If you find yourself in the unusual situation where you need to force certain nodes to join each other specifically, you
can do so by manually changing the saved Primary Component state.

Warning: Under normal circumstances, for safety reasons, you should entirely avoid editing or otherwise modi-
fying the gvwstate.dat file. Doing so may lead to unexpected results.

When a node starts for the first time or after a graceful shutdown, it randomly generates and assigns to itself a UUID,
which serves as its identifier to the rest of the cluster. If the node finds a gvwstate.dat file in the data directory, it
reads the my_uuid field to find the value it should use.

By manually assigning arbitrary UUID values to the respective fields on each node, you force them to join each other,
forming a new Primary Component, as they start.

For example, assume that you have three nodes that you would like to start together to form a new Primary Component
for the cluster. You will need to generate three UUID values, one for each node.

SELECT UUID();

+--------------------------------------+
| UUID() |
+--------------------------------------+
| 47bbe2e2-1606-11e4-8593-2a6d8335bc79 |
+--------------------------------------+

You would then take these values and use them to modify the gwstate.dat file on node1:

my_uuid: d3124bc8-1605-11e4-aa3d-ab44303c044a
#vwbeg
view_id: 3 0dae1307-1606-11e4-aa94-5255b1455aa0 12
bootstrap: 0
member: 0dae1307-1606-11e4-aa94-5255b1455aa0 1
member: 47bbe2e2-1606-11e4-8593-2a6d8335bc79 1

(continues on next page)

94 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

member: d3124bc8-1605-11e4-aa3d-ab44303c044a 1
#vwend

Then repeat the process for node2:

my_uuid: 47bbe2e2-1606-11e4-8593-2a6d8335bc79
#vwbeg
view_id: 3 0dae1307-1606-11e4-aa94-5255b1455aa0 12
bootstrap: 0
member: 0dae1307-1606-11e4-aa94-5255b1455aa0 1
member: 47bbe2e2-1606-11e4-8593-2a6d8335bc79 1
member: d3124bc8-1605-11e4-aa3d-ab44303c044a 1
#vwend

And, the same again for node3:

my_uuid: d3124bc8-1605-11e4-aa3d-ab44303c044a
#vwbeg
view_id: 3 0dae1307-1606-11e4-aa94-5255b1455aa0 12
bootstrap: 0
member: 0dae1307-1606-11e4-aa94-5255b1455aa0 1
member: 47bbe2e2-1606-11e4-8593-2a6d8335bc79 1
member: d3124bc8-1605-11e4-aa3d-ab44303c044a 1
#vwend

Then start all three nodes without the bootstrap flag. When they start, Galera Cluster reads the gvwstate.dat file
for each. It pulls its UUID from the file and uses those of the member field to determine which nodes it should join
in order to form a new Primary Component.

Related Documents

• pc.recovery (page 301)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_cluster_status (page 317)

• wsrep_last_committed (page 325)

• pc.bootstrap (page 301)

• wsrep_provider_options (page 259)

• Home

• Docs (page 1)

4.7. Recovering Primary Component 95

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• KB

• Training

• FAQ

4.8 Resetting the Quorum

Although it is unlikely, you may find your nodes no longer consider themselves part of the Primary Component. There
might have been a network failure; perhaps more than half of the cluster failed; or there is a split-brain situation. In
these cases, the node come to suspect that there is another Primary Component, to which they are no longer connected.

This loss of integrity can be a problem. When it occurs, the nodes will start to return an Unknown command error to
all of queries they’re given to execute: they simply stop performing their duties for fear of making the situation worse
by becoming too out-of-sync with their true cluster.

You can see if this is happening by executing the SHOW STATUS statement and checking the wsrep_cluster_status
(page 317) status variable. Specifically, this is done by executing the following SQL statement on each node:

SHOW GLOBAL STATUS LIKE 'wsrep_cluster_status';

+----------------------+---------+
| Variable_name | Value |
+----------------------+---------+
| wsrep_cluster_status | Primary |
+----------------------+---------+

The return value Primary indicates that the node on which it was executed is part of the Primary Component. When
the query returns any other value it indicates that the node is part of a non-operational component. If none of the nodes
return the value Primary, you need to reset the Quorum.

Situations in which none of the nodes show they are part of the Primary Component are very rare. If you discover one
or more nodes wtih a value Primary, it may indicate a problem with network connectivity, rather than a need to reset
the quorum. Investigate the connection possibility. Once the nodes regain network connectivity they automatically
resynchronize with the Primary Component.

Finding the Most Advanced Node

Before you can reset the quorum, you need to identify the most advanced node in the cluster. That is, you must find the
node whose local database committed the last transaction. Regardless of the method you use in resetting the quorum,
this node should serve as the starting point for the new Primary Component.

Identifying the most advanced node requires that you find the node with the highest sequence number (that is, seqno).
You can determine this by checking the wsrep_last_committed (page 325) status variable. From the database client on
each node, run the following query:

SHOW STATUS LIKE 'wsrep_last_committed';

+----------------------+--------+
| Variable_name | Value |
+----------------------+--------+
| wsrep_last_committed | 409745 |
+----------------------+--------+

96 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

The return value is the sequence number for the last transaction the node committed. If the mysqld daemon is down,
you can restart mysqld without starting Galera. If you do not want to restart the databases, you may be able to
ascertain the sequence number from the grastate.dat file, located in the data directory.

Once you’ve found the sequence numbers of each node, the one with the highest value is the most advanced one in the
cluster. Use that node as the starting point when bootstrapping the new Primary Component. This is explained in the
next section here.

Resetting the Quorum

When you reset the quorum, what you are doing is bootstrapping the Primary Component on the most advanced node
you have available. This node then functions as the new Primary Component, bringing the rest of the cluster into line
with its state.

There are two methods available to you in this process: automatic and manual. The recommended one for a quorum
reset is the automatic method. Unlike the manual method, automatic bootstrapping preserve the write-set cache, or
GCache, on each node. What this means is that when the new Primary Component starts, some or all of the joining
nodes can be provisioned quickly using the Incremental State Transfer (IST) method, rather than the slower State
Snapshot Transfer (SST) method.

Automatic Bootstrap

Resetting the quorum will bootstrap the Primary Component onto the most advanced node. With the automatic
method, this is done by dynamically enabling pc.bootstrap (page 301) through the wsrep_provider_options (page 259)
through the database client—it is not done through the configuration file. Once you set this option, it will make the
node a new Primary Component.

To perform an automatic bootstrap, run the following command using the mysql client of the most advanced node:

SET GLOBAL wsrep_provider_options='pc.bootstrap=YES';

The node now operates as the starting node in a new Primary Component. Nodes in nonoperational components that
have network connectivity attempt to initiate incremental state transfers if possible, state snapshot transfers if not, with
this node, bringing their own databases up-to-date.

Manual Bootstrap

Resetting the quorum bootstraps the Primary Component onto the most advanced node. With the manual method, this
is done by shutting down the cluster—shutting down mysqld on all of the nodes—and then starting mysqld with
Galera on each node, beginning with the most advanced one.

To bootstrap manually a cluster, first determine the most advanced node by executing the following from the command-
line on each node:

mysql -u root -p -e "SHOW STATUS LIKE 'wsrep_last_committed'"

Once you’ve determined which node has the highest sequence number, you can begin shutting down the cluster. Just
shut down mysqld on all of the nodes in the cluster—leaving the most advanced node until last. For servers that use
init, enter the following from the command-line:

service mysql stop

For servers that use systemd, execute instead this from the command-line:

4.8. Resetting the Quorum 97

Galera Cluster Documentation, Releases 3.x and 4.x

systemctl stop mysql

You are now ready to start the cluster again. Start the most advanced node with the mysqld_bootstrap com-
mand—not the other nodes. For servers that use init, run the following command:

service mysql start mysqld_bootstrap

For servers that use systemd and Galera Cluster 5.7 or 8.0, enter instead the following from the command-line:

mysqld_bootstrap

For MySQL servers that use systemd and at least version 5.7 of Galera Cluster, you can execute the following script
from the command-line only on the first node:

mysqld_bootstrap

For MariaDB servers that use systemd, you might try to execute the following script from the command-line—again,
only on the first node:

galera_new_cluster

With that first node running and acting as Primary Component, you are not ready to start all of the other nodes in the
cluster. For servers that use init, run the following command:

service mysql start

For servers that use systemd, instead run this command:

systemctl start mysqld

Written into all of these scripts is the --wsrep-new-cluster option, but it is done with a certain finesse.
Whichever method or script you use, when the first node starts with the --wsrep-new-cluster option, it ini-
tializes a new cluster using the data from the most advanced state available from the previous cluster. As the other
nodes start, they connect to this node and request state snapshot transfers, to bring their own databases up-to-date. In
a short amount of time, they all should become synchronized and running smoothly.

Related Documents

• wsrep_cluster_status (page 317)

• wsrep_last_committed (page 325)

• pc.bootstrap (page 301)

• wsrep_provider_options (page 259)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

98 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

• search

Related Documents

• Galera Status Variables (page 312)

• gcs.recv_q_hard_limit (page 296)

• gcs.fc_limit (page 295)

• gcs.max_throttle (page 296)

• gcs.recv_q_soft_limit (page 296)

• gcs.fc_factor (page 294)

• wsrep_flow_control_sent (page 323)

• wsrep_flow_control_recv (page 322)

• wsrep_flow_control_paused (page 321)

• wsrep_flow_control_paused_ns (page 322)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.9 Managing Flow Control

The cluster replicates changes synchronously through global ordering, but applies these changes asynchronously from
the originating node out. To prevent any one node from falling too far behind the cluster, Galera Cluster implements a
feedback mechanism called Flow Control.

Nodes queue the write-sets they receive in the global order and begin to apply and commit them on the database. In
the event that the received queue grows too large, the node initiates Flow Control. The node pauses replication while it
works the received queue. Once it reduces the received queue to a more manageable size, the node resumes replication.

Monitoring Flow Control

Galera Cluster provides global status variables for use in monitoring Flow Control. These break down into those status
variables that count Flow Control pause events and those that measure the effects of pauses.

SHOW STATUS LIKE 'wsrep_flow_control_%';

Running these status variables returns only the node’s present condition. You are likely to find the information more
useful by graphing the results, so that you can better see the points where Flow Control engages.

For instance, using myq_gadgets:

4.9. Managing Flow Control 99

https://galeracluster.com
https://galeracluster.com/support/#galera-cluster-support-subscription
https://github.com/jayjanssen/myq_gadgets/

Galera Cluster Documentation, Releases 3.x and 4.x

$ mysql -u monitor -p -e 'FLUSH TABLES WITH READ LOCK;' \
example_database

$ myq_status wsrep

Wsrep Cluster Node Queue Ops Bytes Flow Conflct
time name P cnf # name cmt sta Up Dn Up Dn Up Dn pau snt dst lcf
→˓bfa
09:22:17 cluster1 P 3 3 node3 Sync T/T 0 0 0 9 0 13K 0.0 0 101 0
→˓0
09:22:18 cluster1 P 3 3 node3 Sync T/T 0 0 0 18 0 28K 0.0 0 108 0
→˓0
09:22:19 cluster1 P 3 3 node3 Sync T/T 0 4 0 3 0 4.3K 0.0 0 109 0
→˓0
09:22:20 cluster1 P 3 3 node3 Sync T/T 0 18 0 0 0 0 0.0 0 109 0
→˓0
09:22:21 cluster1 P 3 3 node3 Sync T/T 0 27 0 0 0 0 0.0 0 109 0
→˓0
09:22:22 cluster1 P 3 3 node3 Sync T/T 0 29 0 0 0 0 0.9 1 109 0
→˓0
09:22:23 cluster1 P 3 3 node3 Sync T/T 0 29 0 0 0 0 1.0 0 109 0
→˓0

You can find the replica queue under the Queue Dn column and FC pau refers to Flow Control pauses. When the
replica queue rises to a certain point, Flow Control changes the pause value to 1.0. The node will hold to this value
until the replica queue is worked down to a more manageable size.

For more information on status variables that relate to flow control, see Galera Status Variables (page 312).

Monitoring for Flow Control Pauses

When Flow Control engages, it notifies the cluster that it is pausing replication using an FC_Pause event. Galera
Cluster provides two status variables that monitor for these events.

• wsrep_flow_control_sent (page 323) This status variable shows the number of Flow Control pause events sent
by the local node since the last status query.

• wsrep_flow_control_recv (page 322) This status variable shows the number of Flow Control pause events on the
cluster, both those from other nodes and those sent by the local node, since the last status query.

Measuring the Flow Control Pauses

In addition to tracking Flow Control pauses, Galera Cluster also allows you to track the amount of time since the last
FLUSH STATUS query during which replication was paused due to Flow Control.

You can find this using one of two status variables:

• wsrep_flow_control_paused (page 321) Provides the amount of time replication was paused as a fraction. Ef-
fectively, how much the replica lag is slowing the cluster. The value 1.0 indicates replication is paused now.

• wsrep_flow_control_paused_ns (page 322) Provides the amount of time replication was paused in nanoseconds.

Configuring Flow Control

Galera Cluster provides two sets of parameters that allow you to manage how nodes handle the replication rate and
Flow Control. The first set controls the write-set cache, the second relates to the points at which the node engages and
disengages Flow Control.

100 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

Managing the Replication Rate

These three parameters control how nodes respond to changes in the replication rate. They allow you to manage the
write-set cache on an individual node.

• gcs.recv_q_hard_limit (page 296) This sets the maximum write-set cache size (in bytes). The parameter value
depends on the amount of RAM, swap size and performance considerations.

The default value is SSIZE_MAX minus 2 gigabytes on 32-bit systems. There is no practical limit on 64-bit
systems.

In the event that a node exceeds this limit and gcs.max_throttle (page 296) is not set at 0.0, the node aborts
with an out-of-memory error. If gcs.max_throttle (page 296) is set at 0.0., replication in the cluster stops.

• gcs.max_throttle (page 296) This sets the smallest fraction to the normal replication rate the node can tolerate
in the cluster. If you set the parameter to 1.0 the node does not throttle the replication rate. If you set the
parameter for 0.0, a complete replication stop is possible.

The default value is 0.25.

• gcs.recv_q_soft_limit (page 296) This serves to estimate the average replication rate for the node. It is a fraction
of the gcs.recv_q_hard_limit (page 296). When the replication rate exceeds the soft limit, the node calculates the
average replication rate (in bytes) during this period. After that, the node decreases the replication rate linearly
with the cache size so that at the gcs.recv_q_hard_limit (page 296) it reaches the value of the gcs.max_throttle
(page 296) times the average replication rate.

The default value is 0.25.

Note: When the node estimates the average replication rate, it can reach a value that is way off from the
sustained replication rate.

The write-set cache grows semi-logarithmically with time after the gcs.recv_q_soft_limit (page 296) and the time
needed for a state transfer to complete.

Managing Flow Control

These parameters control the point at which the node triggers Flow Control and the factor used in determining when
it should disengage Flow Control and resume replication.

• gcs.fc_limit (page 295) This parameter determines the point at which Flow Control engages. When the replica
queue exceeds this limit, the node pauses replication.

It is essential for multi-primary configurations that you keep this limit low. The certification conflict rate is
proportional to the replica queue length. In primary-replica setups, you can use a considerably higher value to
reduce Flow Control intervention.

The default value is 16.

• gcs.fc_factor (page 294) This parameter is used in determining when the node can disengage Flow Control.
When the replica queue on the node drops below the value of gcs.fc_limit (page 295) times that of gcs.fc_factor
(page 294) replication resumes.

The default value is 0.5.

Bear in mind that, while it is critical for multi-primary operations that you use as small a replica queue as possible, the
replica queue length is not so critical in primary-replica setups. Depending on your application and hardware, the node
can apply even 1K of write-sets in a fraction of a second. The replica queue length has no effect on primary-replica
failover.

4.9. Managing Flow Control 101

Galera Cluster Documentation, Releases 3.x and 4.x

Warning: Cluster nodes process transactions asynchronously with regards to each other. Nodes cannot anticipate
in any way the amount of replication data. Because of this, Flow Control is always reactive. That is, it only
comes into affect after the node exceeds certain limits. It cannot prevent exceeding these limits or, when they are
exceeded, it cannot make any guarantee as to the degree they are exceeded.

Meaning, if you were to configure a node with:

gcs.recv_q_hard_limit=100Mb

That node can still exceed that limit from a 1Gb write-set.

Related Documents

• Galera Status Variables (page 312)

• gcs.recv_q_hard_limit (page 296)

• gcs.fc_limit (page 295)

• gcs.max_throttle (page 296)

• gcs.recv_q_soft_limit (page 296)

• gcs.fc_factor (page 294)

• wsrep_flow_control_sent (page 323)

• wsrep_flow_control_recv (page 322)

• wsrep_flow_control_paused (page 321)

• wsrep_flow_control_paused_ns (page 322)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Upgrading Galera Cluster (page 89)

• evs.auto_evict (page 284)

• evs.delayed_keep_period (page 286)

• evs.delay_margin (page 286)

• evs.evict (page 286)

• evs.version (page 291)

• wsrep_evs_delayed (page 320)

102 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

• wsrep_evs_evict_list (page 320)

• wsrep_evs_state (page 321)

• wsrep_provider_options (page 259)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.10 Auto-Eviction

When Galera Cluster notices erratic behavior in a node (for example, unusually delayed response times), it can initiate
a process to remove the node permanently from the cluster. This process is called Auto-Eviction.

Configuring Auto-Eviction

Each node in a cluster monitors the group communication response times from all other nodes in the cluster. When a
cluster registers delayed responses from a node, it makes an entry about the node to the delayed list.

If the delayed node becomes responsive again for a fixed period, entries for that node are removed from the delayed list.
However, if the node receives enough delayed entries and it is found on the delayed list for the majority of the cluster,
the delayed node is evicted permanently from the cluster. Evicted nodes cannot rejoin the cluster until restarted.

You can configure the parameters of Auto-Eviction by setting the following options through wsrep_provider_options
(page 259):

• evs.delay_margin (page 286): This sets the time period that a node can delay its response from expectations
until the cluster adds it to the delayed list. You must set this parameter to a value higher than the round-trip
delay time (RTT) between the nodes.

The default value is PT1S.

• evs.delayed_keep_period (page 286): This sets the time period you require a node to remain responsive until it
is removed from the delayed list.

The default value is PT30S.

• evs.evict (page 286) This sets the point in which the cluster triggers manual eviction to a certain node value.
Setting this parameter as an empty string causes it to clear the evict list on the node where it is set.

• evs.auto_evict (page 284): This sets the number of entries allowed for a delayed node before Auto-Eviction
takes place. Setting this to 0 disables the Auto-Eviction protocol on the node, though the node will continue to
monitor node response times.

The default value is 0.

• evs.version (page 291): This sets which version of the EVS Protocol the node uses. Galera Cluster enables
Auto-Eviction starting with EVS Protocol version 1.

– If you use Galera Cluster version 3.9 or older, the default value is 0.

– If you use Galera Cluster version 4.0 or newer, the default value is 1.

To check your version of Galera Cluster, see wsrep_provider_version (page 333).

4.10. Auto-Eviction 103

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Checking Eviction Status

If you suspect a node is becoming delayed, you can check its eviction status through Galera status variables. You can
do this by using the SHOW STATUS statement from the database client. You would enter something like this:

SHOW STATUS LIKE 'wsrep_evs_delayed';

Below are the Galera status variables available to you:

• wsrep_evs_state (page 321): This status variable gives the internal state of the EVS Protocol.

• wsrep_evs_delayed (page 320): This status variable gives a comma separated list of nodes on the delayed list.
The format used in that list is uuid:address:count. The count refers to the number of entries for the
given delayed node.

• wsrep_evs_evict_list (page 320): This status variable lists the UUID’s of evicted nodes.

Upgrading from Previous Versions

Releases of Galera Cluster prior to version 3.8 use EVS Protocol version 0, which is not directly compatible with
version 1. As such, when you upgrade Galera Cluster for a node, the node continues to use EVS Protocol version 0.
Releases of Galera Cluster after version 4.0 use EVS Protocol version 1.

To update the EVS Protocol version, you must first update the Galera Cluster software on each node. Here are the
steps to do that:

1. Choose a node to start the upgrade and stop mysqld on it. For systems that use init, run the following
command:

service mysql stop

For systems that run systemd, use instead this command:

systemctl stop mysql

2. Once you stop mysqld, update the Galera Cluster software for the node. This can vary depending on how you
installed Galera Cluster and which database server and operating system distribution the server uses.

3. Using a text editor, edit the configuration file, /etc/my.cnf. Set the EVS Protocol version to 0.

wsrep_provider_options="evs.version=0"

4. After saving the configuration file, restart the node. For systems that use init, run the following command:

service mysql start

For systems that run systemd, instead use this command:

systemctl start mysql

5. Using the database client, check the node state with the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_state_comment';

+----------------------------+--------+
| Variable_name | Value |
+----------------------------+--------+
| wsrep_local_state_comment | Joined |
+----------------------------+--------+

104 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

When the node state reads as Synced, the node is back in sync with the cluster.

Repeat the above steps on each node in the cluster to update them. Once this process is finished, the cluster will have
the latest version of Galera Cluster. You can then begin updating the EVS Protocol version for each node. Below are
the steps to do that:

1. On the first node, edit the configuration file, /etc/my.cnf with a text editor. Change the EVS Protocol
version in it like so:

wsrep_provider_options="evs.version=1"

2. After saving, restart mysqld. If your system uses init, run the following command:

service mysql restart

For system that run systemd, use instead this command:

systemctl restart mysql

3. Using the database client, execute the SHOW STATUS statement to see if the EVS Protocol is using version 1.
This time give it the new wsrep_evs_state (page 321) status variable.

SHOW STATUS LIKE 'wsrep_evs_state';

If the SHOW STATUS statement returns an empty set, something went wrong and your database server is still
using EVS Protocol version 0. If it returns a results set, the EVS Protocol is on the right version and you can
proceed.

4. Once you confirm the server is using the right version, check the node state. Execute the SHOW STATUS
statement like so:

SHOW STATUS LIKE 'wsrep_local_state_comment';

+----------------------------+--------+
| Variable_name | Value |
+----------------------------+--------+
| wsrep_local_state_comment | Joined |
+----------------------------+--------+

When the node state reads as Synced, the node is back in sync with the cluster.

These steps will update the EVS Protocol version for one node in a cluster. Repeat the process on each of the remaining
nodes so that they all use EVS Protocol version 1.

For more information on upgrading in general, see Upgrading Galera Cluster (page 89).

Related Documents

• Upgrading Galera Cluster (page 89)

• evs.auto_evict (page 284)

• evs.delayed_keep_period (page 286)

• evs.delay_margin (page 286)

• evs.evict (page 286)

• evs.version (page 291)

• wsrep_evs_delayed (page 320)

• wsrep_evs_evict_list (page 320)

4.10. Auto-Eviction 105

Galera Cluster Documentation, Releases 3.x and 4.x

• wsrep_evs_state (page 321)

• wsrep_provider_options (page 259)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• When to Stream (page 35)

• wsrep_trx_fragment_unit (page 272)

• wsrep_trx_fragment_size (page 271)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.11 Using Streaming Replication

When a node replicates a transaction under Streaming Replication, it breaks the transaction into fragments, and then
certifies and applies the fragments to replica nodes while the transaction is still in progress.

This allows you to work with larger data-sets, manage hot records, and help avoid conflicts and hangs in the case of
long-running transactions.

Note: Streaming Replication is a new feature introduced in version 4.0 of Galera Cluster. Older versions do not
support these operations.

Enabling Streaming Replication

The best practice when working with Streaming Replication is to enable it at a session-level for specific transactions,
or parts thereof. The reason is that Streaming Replication increases the load on all nodes when applying and rolling
back transactions. You’ll get better performance if you only enable Streaming Replication on those transactions that
won’t run correctly without it.

For more information, see When to Use Streaming Replication (page 35).

106 Chapter 4. Galera Cluster Administration

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Enabling Streaming Replication requires you to define the replication unit and number of units to use in forming
the transaction fragments. Two parameters control these variables: wsrep_trx_fragment_unit (page 272) and ws-
rep_trx_fragment_size (page 271).

Below is an example of how to set these two parameters:

SET SESSION wsrep_trx_fragment_unit='statements';
SET SESSION wsrep_trx_fragment_size=3;

In this example, the fragment is set to three statements. For every three statements from a transaction, the node will
generate, replicate and certify a fragment.

You can choose between a few replication units when forming fragments:

• bytes This defines the fragment size in bytes.

• rows This defines the fragment size as the number of rows the fragment updates.

• statements This defines the fragment size as the number of statements in a fragment.

Choose the replication unit and fragment size that best suits the specific operation you want to run.

Streaming Replication with Hot Records

When your application needs to update frequently the same records from the same table (for example, implementing a
locking scheme, a counter, or a job queue), Streaming Replication allows you to force critical changes to replicate to
the entire cluster.

For instance, consider the use case of a web application that creates work orders for a company. When the transaction
starts, it updates the table work_orders, setting the queue position for the order. Under normal replication, two
transactions can come into conflict if they attempt to update the queue position at the same time.

You can avoid this with Streaming Replication. As an example of how to do this, you would first execute the following
SQL statement to begin the transaction:

START TRANSACTION;

After reading the data that you need for the application, you would enable Streaming Replication by executing the
following two SET statements:

SET SESSION wsrep_trx_fragment_unit='statements';
SET SESSION wsrep_trx_fragment_size=1;

Next, set the user’s position in the queue like so:

UPDATE work_orders
SET queue_position = queue_position + 1;

With that done, you can disable Streaming Replication by executing one of the previous SET statements, but with a
different value like so:

SET SESSION wsrep_trx_fragment_size=0;

You can now perform whatever additional tasks you need to prepare the work order, and then commit the transaction:

COMMIT;

4.11. Using Streaming Replication 107

Galera Cluster Documentation, Releases 3.x and 4.x

During the work order transaction, the client initiates Streaming Replication for a single statement, which it uses to set
the queue position. The queue position update then replicates throughout the cluster, which prevents other nodes from
coming into conflict with the new work order.

Related Documents

• When to Stream (page 35)

• wsrep_trx_fragment_unit (page 272)

• wsrep_trx_fragment_size (page 271)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Backing Up Cluster Data (page 112)

• Galera Parameters (page 275)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.12 Galera Arbitrator

When deploying a Galera Cluster, it is recommended to use a minimum of three instances: three nodes, three data
centers and so on.

If the cost of adding resources (such as a third data center) is too much, you can use Galera Arbitrator. Galera
Arbitrator is a member of a cluster that participates in voting, but not in the actual replication.

Warning: While Galera Arbitrator does not participate in replication, it does receive the same data as all other
nodes. You must secure its network connection.

Galera Arbitrator serves two purposes: When you have an even number of nodes, it functions as an odd node, to avoid
split-brain situations. It can also request a consistent application state snapshot, which is useful in making backups.

Galera Arbitrator

108 Chapter 4. Galera Cluster Administration

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

If one datacenter fails or loses its WAN connection, the node that sees the arbitrator—and by extension sees
clients—continues operation.

Note: Even though Galera Arbitrator does not store data, it must see all replication traffic. Placing Galera Arbitrator
in a location with poor network connectivity to the rest of the cluster may lead to poor cluster performance.

In the event that Galera Arbitrator fails, it won’t affect cluster operation. You can attach a new instance to the cluster
at any time and there can be several instances running in the cluster.

For more information on using Galera Arbitrator for making backups, see Backing Up Cluster Data (page 112).

Starting Galera Arbitrator

Galera Arbitrator is a separate daemon from Galera Cluster, called garbd. This means that you must start it separately
from the cluster. It also means that you cannot configure Galera Arbitrator through the my.cnf configuration file.

How you configure Galera Arbitrator depends on how you start it. That is to say, whether it runs from the shell or as a
service. These two methods are described in the next two sections.

Note: When Galera Arbitrator starts, the script executes a sudo statement as the user nobody during its process.
There is a particular issue in Red Hat Enterprise Linux and some other distributions of Linux, in which the default
sudo configuration will block users that operate without tty access. To correct this, edit with a text editor the
/etc/sudoers file and comment out this line:

Defaults requiretty

This will prevent the operating system from blocking Galera Arbitrator.

4.12. Galera Arbitrator 109

Galera Cluster Documentation, Releases 3.x and 4.x

Starting Galera Arbitrator from the Shell

When starting Galera Arbitrator from the shell, you have two options as to how you may configure it. You can set the
parameters through the command line arguments, as in the example here:

$ garbd --group=example_cluster \
--address="gcomm://192.168.1.1,192.168.1.2,192.168.1.3" \
--option="socket.ssl_key=/etc/ssl/galera/server-key.pem;socket.ssl_cert=/etc/ssl/

→˓galera/server-cert.pem;socket.ssl_ca=/etc/ssl/galera/ca-cert.pem;socket.ssl_
→˓cipher=AES128-SHA256""

If you use SSL, it is necessary to specify the cipher. Otherwise, after initializing the SSL context, an error will occur
with a message saying, “Terminate called after throwing an instance of ‘gu::NotSet’”.

If you do not want to enter the options every time you start Galera Arbitrator from the shell, you can set the options in
the arbitrator.config configuration file:

arbitrator.config
group = example_cluster
address = gcomm://192.168.1.1,192.168.1.2,192.168.1.3

Then, to enable those options when you start Galera Arbitrator, use the --cfg option like so:

$ garbd --cfg /path/to/arbitrator.config

For more information on the options available to Galera Arbitrator through the shell, run garbd with the --help
argument.

$ garbd --help

Usage: garbd [options] [group address]

Configuration:
-d [--daemon] Become daemon
-n [--name] arg Node name
-a [--address] arg Group address
-g [--group] arg Group name
--sst arg SST request string
--donor arg SST donor name
-o [--options] arg GCS/GCOMM option list
-l [--log] arg Log file
-c [--cfg] arg Configuration file

Other options:
-v [--version] Print version
-h [--help] Show help message

In addition to the standard configuration, any parameter available to Galera Cluster also works with Galera Arbitrator,
except for those prefixed by repl. When you start it from the shell, you can set those using the --option argument.

For more information on the options available to Galera Arbitrator, see Galera Parameters (page 275).

Starting Galera Arbitrator as a Service

When starting Galera Aribtrator as a service, whether using init or systemd, you would use a different format for
the configuration file than you would use when starting it from the shell. Below is an example of the configuration file:

110 Chapter 4. Galera Cluster Administration

Galera Cluster Documentation, Releases 3.x and 4.x

Copyright (C) 2013-2015 Codership Oy
This config file is to be sourced by garbd service script.

A space-separated list of node addresses (address[:port]) in the cluster:
GALERA_NODES="192.168.1.1:4567 192.168.1.2:4567"

Galera cluster name, should be the same as on the rest of the node.
GALERA_GROUP="example_wsrep_cluster"

Optional Galera internal options string (such as SSL settings)
see https://galeracluster.com/documentation/galera-parameters.html
GALERA_OPTIONS="socket.ssl_cert=/etc/galera/cert/cert.pem;socket.ssl_key=/$"

Log file for garbd. Optional, by default logs to syslog
LOG_FILE="/var/log/garbd.log"

In order for Galera Arbitrator to use the configuration file, you must place it in a file directory where your system
looks for service configuration files. There is no standard location for this directory; it varies from distribution to
distribution, though it usually in /etc and at least one sub-directory down. Some common locations include:

• /etc/defaults/

• /etc/init.d/

• /etc/systemd/

• /etc/sysconfig/

Check the documentation for the operating system distribution your server uses to determine where to place service
configuration files.

Once you have the service configuration file in the right location, you can start the garb service. For systems that use
init, run the following command:

service garb start

For systems that run systemd, use instead this command:

systemctl start garb

This starts Galera Arbitrator as a service. It uses the parameters set in the configuration file.

In addition to the standard configuration, any parameter available to Galera Cluster also works with Galera Arbitrator,
excepting those prefixed by repl. When you start it as a service, you can set those using the GALERA_OPTIONS
parameter.

For more information on the options available to Galera Arbitrator, see Galera Parameters (page 275).

Related Documents

• Backing Up Cluster Data (page 112)

• Galera Parameters (page 275)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

4.12. Galera Arbitrator 111

Galera Cluster Documentation, Releases 3.x and 4.x

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Scriptable SST (page 77)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.13 Backing Up Cluster Data

You can perform backups with Galera Cluster at the same regularity as with a standard database server, using a backup
script. Since replication ensures that all nodes have the exact same data, running a backup script on one node will
backup the data on all nodes in the cluster.

The problem with such a simple backup method, though, is that it lacks a Global Transaction ID (GTID). You can
use backups of this kind to recover data, but they are insufficient for use in recovering nodes to a well-defined state.
Furthermore, some backup procedures can block cluster operations during the backup.

Getting backups with the associated Global Transaction ID requires a different approach.

State Snapshot Transfer as Backup

Taking a full data backup is very similar to node provisioning through a State Snapshot Transfer. In both cases, the
node creates a full copy of the database contents, using the same mechanism to associate a Global Transaction ID with
the database state. Invoking backups through the state snapshot transfer mechanism has the following benefits:

• The node initiates the backup at a well-defined point.

• The node associates a Global Transaction ID with the backup.

• The node desyncs from the cluster to avoid throttling performance while making the backup, even if the backup
process blocks the node.

• The cluster knows that the node is performing a backup and won’t choose the node as a donor for another node.

In order to use this method for backups, you will need to use a script that implements both your preferred backup
procedure and the Galera Arbitrator daemon, triggering it in a manner similar to a state snapshot transfer. You would
execute such a script from the command-line, as described below:

On the node where you want to have a backup, start the original SST script manually in “joiner” mode. This command
opens a socket listening for a connection from “donor”:

$ wsrep_sst_rsync --role 'joiner' --address '10.21.32.1:3333' --datadir '/tmp/backup/
→˓' \
--defaults-file '' --defaults-group-suffix '' --parent $$

Note the output:

112 Chapter 4. Galera Cluster Administration

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

$ ready 10.21.32.1:3333/rsync_sst

Next, on any node, give the command:

$ garbd --address gcomm://10.21.32.1:4567?gmcast.listen_addr=tcp://0.0.0.0:4560 \
--group my_cluster --sst rsync:10.21.32.1:3333/rsync_sst

Note: In the command, ?gmcast.listen_addr=tcp://0.0.0.0:4560 is an arbitrary listen socket address
that Galera Arbitrator opens to communicate with the cluster. You only need to specify this in the event that the default
socket address (that is, 0.0.0.0:4567) is busy.

Note: In the command, the value of the --sst option is <sst_method>:<sst_address>, where
<sst_address> is given in the output of the joiner script above.

Note: You may find it useful to create your backup script using a modified version of the standard state snapshot
transfer script. For information on scripts of this kind, see Scriptable State Snapshot Transfers (page 77).

Related Documents

• Scriptable SST (page 77)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Container Deployments (page 131)

• Deployment Variants (page 116)

• Load Balancing (page 122)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

4.13. Backing Up Cluster Data 113

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

114 Chapter 4. Galera Cluster Administration

CHAPTER

FIVE

DEPLOYMENT

When you start Galera Cluster, you have to do so by initializing a series of nodes that are configured to communicate
with each other and to replicate each other. Each node in the cluster is a particular instance of a MySQL, MariaDB, or
Percona XtraDB database server. How your application servers interact with the cluster and how you manage the load
and the individual nodes represents your deployment.

Cluster Deployment Variants (page 116)

Galera Cluster provides synchronous multi-primary replication. This means that the nodes collectively operate as a
single database server that listens across many interfaces. This section provides various examples of how you might
deploy a cluster in relation to your application servers.

Load Balancing (page 122)

In high availability environments, you may sometimes encounter situations in which some nodes have a much greater
load of traffic than others. If you discover such a situation, there may be some benefit in configuring and deploying
load balancers between your application servers and Galera Cluster. Doing so will allow you to distribute client
connections more evenly between the nodes, ensuring better performance.

This section provides guides to installing, configuring and deploying HAProxy, Pen and Galera Load Balancer, helping
you to manage traffic between clients and the cluster.

Container Deployments (page 131)

When using the standard deployment methods of Galera Cluster, nodes run directly on the server hardware – inter-
acting directly with the operating system (that is, Linux, FreeBSD). By contrast, with container deployments nodes
run in containerized virtual environments on the server. You may find containers useful in building portable deploy-
ments across numerous machines, when testing applications or scripting installations, or when isolating processes for
security.

This section provides guides to installing, configuring and deploying Galera Cluster nodes in container instances using
FreeBSD Jails and Docker.

Related Documents

• Container Deployments (page 131)

• Deployment Variants (page 116)

• Load Balancing (page 122)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

115

Galera Cluster Documentation, Releases 3.x and 4.x

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

5.1 Cluster Deployment Variants

A Galera Cluster will consist of multiple nodes, preferably three or more. Each node is an instance of MySQL,
MariaDB or Percona XtraDB that you convert to Galera Cluster, allowing you to use that node as a cluster base.

Galera Cluster provides synchronous multi-primary replication. You can treat the cluster as a single database server
that listens through many interfaces. To appreciate this, consider a typical n-tier application and the various benefits
that would come from deploying it with Galera Cluster.

No Clustering

In the typical n-tier application cluster without database clustering, there’s no concern for database replication or
synchronization.

Internet traffic will be filtered down to your application servers, all of which read and write from the same DBMS
server. Given that the upper tiers usually remain stateless, you can start as many instances as you need to meet the
demand from the internet. Each instance stores its data in the data tier.

This solution is simple and easy to manage, but has a particular weakness in the data tier’s lack of redundancy.

For example, if for any reason the DBMS server become unavailable, your application also becomes unavailable. This
is the same whether the server crashes or it has been shut down for maintenance.

Similarly, this deployment also introduces performance concerns. While you can start as many instances as you need
to meet the demands on your web and application servers, they can only so much load on the DBMS server can be
handled before the load begins to slow end-user activities.

Whole Stack Clustering

In the typical n-tier application cluster you can avoid the performance bottleneck by building a whole stack cluster.

Internet traffic filters down to the application server, which stores data on its own dedicated DBMS server. Galera
Cluster then replicates the data through to the cluster, ensuring it remains synchronous.

This solution is simple and easy to manage, especially if you can install the whole stack of each node on one physical
machine. The direct connection from the application tier to the data tier ensures low latency.

There are, however, certain disadvantages to whole stack clustering that you should consider:

116 Chapter 5. Deployment

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 1: No Clustering

Fig. 2: Whole Stack Cluster

5.1. Cluster Deployment Variants 117

Galera Cluster Documentation, Releases 3.x and 4.x

• Lack of Redundancy: When the database server fails, the whole stack fails. This is because the application
server uses a dedicated database server. If the database server fails there’s no alternative for the application
server, so the whole stack goes down.

• Inefficient Resource Usage: A dedicated DBMS server for each application server will be overused. This is
poor resource consolidation. For instance, one server with a 7 GB buffer pool is much faster than two servers
with 4 GB buffer pools.

• Increased Unproductive Overhead: Each server reproduces the work of the other servers in the cluster. This
redundancy is a drain on the server’s resources.

• Increased Rollback Rate: Given that each application server writes to a dedicated database server, cluster-wide
conflicts are more likely. This can increase the likelihood of corrective rollbacks.

• Inflexibility: There is no way for you to limit the number of primary nodes or to perform intelligent load
balancing.

Despite the disadvantages, however, this setup can prove very usable for several applications, depending on your
needs.

Data Tier Clustering

To compensate for the shortcomings in whole stack clusters, you can cluster the data tier separately from your web
and application servers.

With data tier clustering, the DBMS servers form a cluster distinct from your n-tier application cluster. The application
servers treat the database cluster as a single virtual server, making calls through load balancers to the data tier.

In a data tier cluster, the failure of one node does not effect the rest of the cluster. Furthermore, resources are con-
solidated better and the setup is flexible. That is to say, you can assign nodes different roles using intelligent load
balancing.

There are, however, certain disadvantages to consider in data tier clustering:

• Complex Structure: Since load balancers are involved, you must back them up in case of failure. This typically
means that you have two more servers than you would otherwise, as well as a failover solution between them.

• Complex Management: You need to configure and reconfigure the load balancers whenever a DBMS server is
added to the cluster or removed.

• Indirect Connections: The load balancers between the application cluster and the data tier cluster increase the
latency for each query. As a result, this can easily become a performance bottleneck. You will need powerful
load balancing servers to avoid this.

• Scalability: This setup does not scale well over several datacenters. Attempts to do so may reduce any benefits
you gain from resource consolidation, given that each datacenter must include at least two DBMS servers.

Data Tier Clustering with Distributed Load Balancing

One solution to the limitations of data tier clustering is to deploy them with distributed load balancing. This method
roughly follows the standard data tier cluster method, but includes a dedicated load balancer installed on each appli-
cation server.

In this deployment, the load balancer is no longer a single point of failure. Furthermore, the load balancer scales
with the application cluster and thus is unlikely to become a bottleneck. Additionally, it minimizes the client-server
communications latency.

Data tier clustering with distributed load balancing has the following disadvantage:

118 Chapter 5. Deployment

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 3: Data Tier Clustering

5.1. Cluster Deployment Variants 119

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 4: Data Tier Cluster with Distributed Load Balancing

120 Chapter 5. Deployment

Galera Cluster Documentation, Releases 3.x and 4.x

• Complex Management: Each application server deployed for an n-tier application cluster will require another
load balancer that you need to set up, manage and reconfigure whenever you change or otherwise update the
database cluster configuring.

Aggregated Stack Clustering

Besides the deployment methods already mentioned, you could set up a hybrid method that integrates whole stack and
data tier clustering by aggregating several application stacks around single DBMS servers.

Fig. 5: Aggregated Stack Clustering

This layout improves on the resource utilization of the whole stack cluster, while maintaining its relative simplicity
and direct DBMS connection benefits. It is also how a data tier cluster with distributed load balancing will look if you
were to use only one DBMS server per datacenter.

The aggregated stack cluster is a good setup for sites that are not very large, but are hosted at more than one datacenter.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

5.1. Cluster Deployment Variants 121

Galera Cluster Documentation, Releases 3.x and 4.x

• search

Related Documents

• Deployment Variants (page 116)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

5.2 Load Balancing

Galera Cluster guarantees node consistency regardless of where and when the query is issued. In other words, you
are free to choose a load-balancing approach that best suits your purposes. If you decide to place the load balancing
mechanism between the database and the application, you can consider, for example, the following tools:

• HAProxy an open source TCP/HTTP load balancer.

• Pen another open source TCP/HTTP load balancer. Pen performs better than HAProxy on SQL traffic.

• Galera Load Balancer inspired by Pen, but is limited to balancing generic TCP connections only.

For more information or ideas on where to use load balancers in your infrastructure, see Cluster Deployment Variants
(page 116).

Related Documents

• Deployment Variants (page 116)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

122 Chapter 5. Deployment

https://galeracluster.com
https://galeracluster.com/training-courses/
https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• FAQ

5.2.1 HAProxy

High Availability Proxy, or HAProxy is a single-threaded event-driven non-blocking engine that combines a fast I/O
layer with a priority-based scheduler. You can use it to balance TCP connections between application servers and
Galera Cluster.

Installation

HAProxy is available in the software repositories of most Linux distributions and it is the ports tree of FreeBSD. You
can install it using the appropriate package manager.

• For DEB-based Linux distributions (for example, Debian and Ubuntu), run the following from the command-
line:

apt-get install haproxy

• For RPM-based Linux distributions (for example, Red Hat Enterprise Linux and CentOS), execute the following
from the command-line:

yum install haproxy

• For FreeBSD and similar operating systems, HAProxy is available in the ports tree at /usr/ports/net/haproxy.
Alternatively, you can install it using the package manager like so:

pkg install net/haproxy

Whichever method you use, it installs HAProxy on your server. In the event that the command for your Linux distri-
bution or operating system does not work as expected, check your system’s documentation or software repository for
the correct procedure to install HAProxy.

Configuration

Configuration options for HAProxy are managed through an haproxy.cfg configuration file. The above pack-
age installations generally put this file in the /etc/haproxy/ directory. However, it may have a different path
depending on your operating system distribution.

To configure HAProxy to work with Galera Cluster, add the lines to the haproxy.cfg configuration file similar to
the following:

Load Balancing for Galera Cluster
listen galera 192.168.1.10:3306

balance source
mode tcp
option tcpka
option mysql-check user haproxy
server node1 192.168.1.1:3306 check weight 1
server node2 192.168.1.2:3306 check weight 1
server node3 192.168.1.3:3306 check weight 1

You will create the proxy for Galera Cluster using the listen parameter. This gives HAProxy an arbitrary name for
the proxy and defines the IP address and port you want it to listen on for incoming connections. Under this parameter,
indent and define a series of options to tell HAProxy what you want it to do with these connections.

5.2. Load Balancing 123

Galera Cluster Documentation, Releases 3.x and 4.x

• balance defines the destination selection policy HAProxy should use in choosing which server it routes in-
coming connections.

• mode tcp defines the type of connections it should route. Galera Cluster uses TCP connections.

• option tcpka enables the keepalive function to maintain TCP connections.

• option mysql-check user <username> enables a database server check to determine whether the
node is currently operational.

• server <server-name> <IP_address> check weight 1 defines the nodes HAProxy should use
in routing connections.

Destination Selection Policies

When HAProxy receives a new connection, there are a number of options available to define which algorithm it uses to
choose where to route the connection. This algorithm is its destination selection policy. It is defined by the balance
parameter.

• Round Robin directs new connections to the next destination in a circular order list, modified by the server’s
weight. Enable it with balance roundrobin.

• Static Round Robin directs new connections to the next destination in a circular order list, modified by the
server’s weight. Unlike the standard implementation of round robin, in static round robin you can’t modify the
server weight on the fly. Changing the server weight requires you to restart HAProxy. Enable it with balance
static-rr.

• Least Connected directs new connections to the server with the smallest number of connections available,
which is adjuted for the server’s weight. Enable it with balance leastconn.

• First directs new connections to the first server with a connection slot available. They are chosen from the
lowest numeric identifier to the highest. Once the server reaches its maximum connections value, HAProxy
moves to the next in the list. Enable it with balance first.

• Source Tracking divides the source IP address by the total weight of running servers. Ensures that client
connections from the same source IP always reach the same server. Enable it with balance source.

In the above configuration example, HAProxy is configured to use the source selection policy. For your implementa-
tion, choose the policy that works best with your infrastructure and load.

Enabling Database Server Checks

In addition to routing TCP connections to Galera Cluster, HAProxy can also perform basic health checks on the
database server. When enabled, HAProxy attempts to establish a connection with the node and parses its response, or
any errors, to determine if the node is operational.

For HAProxy, you can enable this through the mysql-check option. However, it requires that you also create a user
in the cluster for HAProxy to use when connecting.

CREATE USER 'haproxy'@'192.168.1.10';

Make the user name the same as given in the haproxy.cfg configuration file for the mysql-check option.
Replace the IP address with that of the server that runs HAProxy.

Using HAProxy

When you finish configuring HAProxy and the nodes to work with HAProxy, you can start it on the server. For servers
that use init, run the following command:

124 Chapter 5. Deployment

Galera Cluster Documentation, Releases 3.x and 4.x

service haproxy start

For servers that use systemd, run instead this command:

systemctl start haproxy

After doing this, the server will be running HAProxy. When new connections are made to this server, it routes them
through to nodes in the cluster.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

5.2.2 Pen Load Balancer

Pen is a high-scalability, high-availability, robust load balancer for TCP- and UDP-based protocols. You can use it to
balance connections between application servers and Galera Cluster.

Installation

Pen is available in the software repositories of most Linux distributions. You can install it using a package manager.

• For DEB-based Linux distributions (that is, Debian and Ubuntu), run the following from the command-line:

apt-get install pen

• For RPM-based Linux distributions (that is, Red Hat Enterprise Linux and CentOS), use the yum utility instead
by executing the following from the command-line:

yum install pen

Whichever you use, they will install Pen on your system. In the event that the command for your distribution or
operating system does not work as expected, check your system’s documentation or software repository for information
on the correct procedure to install Pen. For instance, on a RPM-based system, you may have to install the yum utility.

5.2. Load Balancing 125

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Using Pen

Once you’ve installed Pen on the load balancing server, you can launch it from the command-line by entering some-
thing like the following:

pen -l pen.log -p pen.pid localhost:3306 \
191.168.1.1:3306 \
191.168.1.2:3306 \
191.168.1.3:3306

When one of the application servers attempts to connect to the Pen server on port 3306, Pen routes that connection to
one of the Galera Cluster nodes.

For more information on Pen configuration and use, see its manpage.

Server Selection

When Pen receives a new connection from the application servers, it first checks to see where the application was
routed on the last connection and attempts to send traffic there. In the event that it cannot establish a connection, it
falls back on a round-robin selection policy.

There are a number of options you can use to modify this behavior when you launch Pen.

• Default Round Robin: This directs all new connections to the next destination in a cirular order, without
determining which server a client used the last time. You can enable this with the -r option.

• Stubborn Selection: In the event that the initial choice is unavailable, Pen closes the client connection. This is
enabled with the -s option.

• Hash Client IP Address: Pen applies a hash on the client IP address for the initial server selection, making it
more predictable where it routes client connections in the future.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Using Galera Load Balancer (page 129)

• LISTEN_ADDR (page 346)

• DEFAULT_TARGETS (page 346)

• OTHER_OPTIONS (page 346)

• –round (page 351)

• –single (page 352)

• –random (page 351)

126 Chapter 5. Deployment

Galera Cluster Documentation, Releases 3.x and 4.x

• –source (page 352)

• Service Installation (page 128)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

5.2.3 Galera Load Balancer (Galera Load Balancer binaries are part of Galera Clus-
ter Enterprise Edition)

Galera Load Balancer provides simple TCP connection balancing. It was developed with scalability and performance
in mind. It draws on Pen for inspiration, but its functionality is limited to only balancing TCP connections. It provides
several features:

• Support for configuring back-end servers at runtime.

• Support for draining servers.

• Support for the epoll API for routing performance.

• Support for multithreaded operations.

• Optional watchdog module to monitor destinations and adjust the routing table.

Installation

Unlike Galera Cluster, there is no binary installation available for Galera Load Balancer. Installing it on your system
will require you to build it from the source files. They’re available on GitHub at glb.

To build Galera Load Balancer, you will need to complete a few steps. First, from a directory convenient for source
builds (for example, /opt), use the git utility to clone the GitHub repository for Galera Load Balancer. You would
do this like so:

$ git clone https://github.com/codership/glb

Next, from within glb directory created by git, run the bootstrap script–which will be found in that directory.

$ cd glb/
$./bootstrap.sh

Now you will need to configure make to build on your system, then run make to build the application. After that, you
will use make to install it. This may seem like a lot, but it is simple. Just execute the following lines, one at a time,
from the command-line:

$./configure

$ make

make install

5.2. Load Balancing 127

https://galeracluster.com
https://github.com/codership/glb

Galera Cluster Documentation, Releases 3.x and 4.x

Note: Galera Load Balancer installs in the /usr/sbin directory. So you will need to run the last line above as root.

Once you’ve successfully execute everything above, Galera Load Balancer will be installed on your system. You can
launch it from the command-line, using the glbd command.

In addition to the system daemon, you will also have installed libglb, a shared library for connection balancing with
any Linux applications that use the connect() call from the C Standard Library.

Service Installation

The above installation procedure only installs Galera Load Balancer to be run manually from the command-line.
However, you may find it more useful to run this application as a system service. To do this, you will need to copy a
couple of files to the appropriate directories.

In the source directory you cloned from GitHub, navigate into the files directory. Within that directory there is a
configuration file and a service script that you need to copy to their relevant locations.

First, copy glbd.sh into /etc/init.d directory under a service name. You would execute the following from
the command-line to do this:

cp glbd.sh /etc/init.d/glb

Now, copy the default glbd.cfg file into the appropriate configuration directory. For Red Hat and its derivatives,
this is /etc/sysconfig/glbd.cfg. For Debian and its derivatives, use /etc/default/glbd.cfg. For the
former possibility, you would execute this from the command-line:

cp glbd.cfg /etc/sysconfig/glbd.cfg

When you finish this, you will be able to manage Galera Load Balancer through the service command. For more
information on available commands, see Using Galera Load Balancer (page 129).

Configuration

When you run Galera Load Balancer, you can configure its use through the command-line options. You can get a
list of by exeduting glb with the --help option. For servers running Galera Load Balancer as a service, you can
manage it through the glbd.cfg configuration file.

• LISTEN_ADDR (page 346): This is the address that Galera Load Balancer monitors for incoming client con-
nections.

• DEFAULT_TARGETS (page 346): This specifies the default servers where Galera Load Balancer is to route
incoming client connections. For this parameter, use the IP addresses for the nodes in your cluster.

• OTHER_OPTIONS (page 346): This is used to define additional Galera Load Balancer options. For example,
you might want to set the balancing policy. Use the same format as you would from the command-line.

Below is an example of a glbd.cfg‘ configuration file:

Galera Load Balancer Configuration
LISTEN_ADDR="8010"
DEFAULT_TARGETS="192.168.1.1 192.168.1.2 192.168.1.3"
OTHER_OPTIONS="--random --top 3"

The glbd.cfg configuration file would be the one you copied into /etc as mentioned in the previous section.

128 Chapter 5. Deployment

Galera Cluster Documentation, Releases 3.x and 4.x

Destination Selection Policies

Galera Load Balancer–both the system daemon and the shared library–supports five destination selection policies.
When you run it from the command-line, you can define these using the command-line arguments. Otherwise, you
will have to add the arguments to the OTHER_OPTIONS (page 346) parameter in the glbd.cfg configuration file.

• Least Connected: This directs new connections to the server using the smallest number of connections possible.
It will be adjusted for the server weight. This is the default policy.

• Round Robin: This sets new connections to the next destination in the circular order list. You can enable it
with the –round (page 351) option.

• Single: This directs all connections to the single server with the highest weight of those available. Routing
continues to that server until it fails, or until a server with a higher weight becomes available. You can enable it
with the –single (page 352) option.

• Random: This will direct connections randomly to available servers. You can enable it using the –random
(page 351) option.

• Source Tracking: This will direct connections originating from the same address to the same server. You can
enable it with the –source (page 352) option.

Using Galera Load Balancer

The section on Service Installation (page 128) explained how to configure a system to run Galera Load Balancer as a
service. If you do that, you can then manage common operations with the service command. The format for doing
this is to enter service, followed by glb, and then an option.

Below is an example of how you might use service to get information on the Galera Load Balancer:

service glb getinfo

Router:

Address : weight usage cons
192.168.1.1:4444 : 1.000 0.000 0
192.168.1.2:4444 : 1.000 0.000 0
192.168.1.3:4444 : 1.000 0.000 0

Destinations: 3, total connections: 0

In the results shown here, you can see a list of servers available, their weight and usage, as well as the number of
connections made to them.

The service script supports several operations. Below is a list of them and their uses:

• start is used to start glb, the Galera Load Balancer.

• stop will stop Galera Load Balancer.

• restart tells glb to stop and restart the Galera Load Balancer.

• getinfo is used as shown in the example above to retrieve the current routing information.

• getstats will provide performance statistics related to the cluster.

• add <IP Address> can be used to add an IP address from the routing table.

• remove <IP Address> will remove the designated IP address from the routing table.

5.2. Load Balancing 129

Galera Cluster Documentation, Releases 3.x and 4.x

• drain <IP Address> will sets the designated server to drain. When doing this, Galera Load Balancer
won’t send new connections to the given server, but it also won’t kill existing connections. Instead, it waits for
the connections to the specified server to end gracefully.

When adding an IP address to Galera Load Balancer at runtime, keep in mind that it must follow the convention, IP
Address:port:weight. A hostname may be used instead of an IP address.

Note: Contact Codership sales at sales@galeracluster.com for more information, and to get Galera Load Balancer
binaries and the Galera Cluster Enterprise Edition software.

Related Documents

• Using Galera Load Balancer (page 129)

• LISTEN_ADDR (page 346)

• DEFAULT_TARGETS (page 346)

• OTHER_OPTIONS (page 346)

• –round (page 351)

• –single (page 352)

• –random (page 351)

• –source (page 352)

• Service Installation (page 128)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_node_address (page 253)

• wsrep_node_name (page 255)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

130 Chapter 5. Deployment

mailto:sales@galeracluster.com
https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

5.3 Container Deployments

In the standard deployment methods for Galera Cluster, a node runs on a server in the same manner as would an
individual stand-alone instance of MySQL or MariaDB. In container deployments, a node runs in a containerized
virtual environment on the server.

You may find these methods useful in portable deployments across numerous machines, testing applications that
depend on Galera Cluster, process isolation for security, or scripting the installation and configuration process.

The configuration for a node running in a containerized environment remains primarily the same as a node running in
the standard manner. However, there are some parameters that draw their defaults from the base system configurations.
You will need to set these, manually. Otherwise, the jail will be unable to access the host file system.

• wsrep_node_address (page 253): A node determines the default address from the IP address on the first network
interface. Jails cannot see the network interfaces on the host system. You need to set this parameter to ensure
that the cluster is given the correct IP address for the node.

• wsrep_node_name (page 255): The node determines the default name from the system hostname. Jails have
their own hostnames, distinct from that of the host system.

Bear in mind that the configuration file must be placed within the container /etc directory, not that of the host system.

Related Documents

• wsrep_node_address (page 253)

• wsrep_node_name (page 255)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Firewall Settings (page 214)

• wsrep_node_address (page 253)

• wsrep_node_name (page 255)

Related Articles

• Starting a Cluster

• Home

• Docs (page 1)

• KB

• Training

• FAQ

5.3. Container Deployments 131

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

5.3.1 Using Docker

Docker provides an open source platform for automatically deploying applications within software containers.

Galera Cluster can run from within a such a container, within Docker. You may find containers useful in portable
deployment across numerous machines, testing applications that depend on Galera Cluster, or scripting the installation
and configuration process.

Note: This guide assumes that you are only running one container node per server. For more information on running
multiple nodes per server, see Getting Started Galera with Docker, ‘Part I <https://galeracluster.com/2015/05/getting-
started-galera-with-docker-part-1/>‘_ and ‘Part II <https://galeracluster.com/2015/05/getting-started-galera-with-
docker-part-2-2/>‘_.

Configuring a Container

Images are the containers that Docker has available to run. There are a number of base images available through
Docker Hub. You can pull these to your system through the docker command-line tool. You can also build new
images.

When Docker builds a new image, it sources a Dockerfile to determine the steps that it needs to take in order to
generate the image you want to use. This means you can script the installation and configuration process. Basically,
such a script would need to load the needed configuration files, run updates, and install packages when the image is
built - all through a single command. Below are examples of how you might write such a script.

For Galera Cluster 8.0:

Galera Cluster Dockerfile
FROM ubuntu:14.04
MAINTAINER your name <your.user@example.org>

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update
RUN apt-get install -y software-properties-common
RUN apt-key adv --keyserver keyserver.ubuntu.com --recv 8DA84635
RUN add-apt-repository 'deb https://releases.galeracluster.com/galera-4/ubuntu trusty
→˓main'
RUN add-apt-repository 'deb https://releases.galeracluster.com/mysql-wsrep-8.0/ubuntu
→˓trusty main'

RUN apt-get update
RUN apt-get install -y galera-4 galera-arbitrator-4 mysql-wsrep-8.0 rsync
RUN apt-get install -y galera-4 galera-arbitrator-4 mysql-wsrep-8.0 rsync

COPY my.cnf /etc/mysql/my.cnf
ENTRYPOINT ["mysqld"]

For Galera Cluster 8.4:

Galera Cluster Dockerfile
FROM ubuntu:14.04
MAINTAINER your name <your.user@example.org>

ENV DEBIAN_FRONTEND noninteractive

(continues on next page)

132 Chapter 5. Deployment

https://registry.hub.docker.com

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

RUN apt-get update
RUN apt-get install -y software-properties-common
RUN apt-key adv --keyserver keyserver.ubuntu.com --recv 8DA84635
RUN add-apt-repository 'deb https://releases.galeracluster.com/galera-4/ubuntu trusty
→˓main'
RUN add-apt-repository 'deb https://releases.galeracluster.com/mysql-wsrep-8.4/ubuntu
→˓trusty main'

RUN apt-get update
RUN apt-get install -y galera-4 galera-arbitrator-4 mysql-wsrep-8.4 rsync
RUN apt-get install -y galera-4 galera-arbitrator-4 mysql-wsrep-8.4 rsync

COPY my.cnf /etc/mysql/my.cnf
ENTRYPOINT ["mysqld"]

Note that for packages before MySQL 5.7.44 and 8.0.35, the signing key is BC19DDBA.

This example follows the installation process for running Galera Cluster from within a Docker container running on
Ubuntu. When you run the build command, Docker pulls down the Ubuntu 14.04 image from Docker Hub, if it is
needed. It then runs each command in the Dockerfile to initialize the image for your use.

Configuration File

Before you build the container, you need to create the configuration file for the node. The COPY command in the
Dockerfile example above copies my.cnf, the MySQL configuration file, from the build directory into the con-
tainer.

For the most part, the configuration file for a node running within Docker is the same as when the node is running on
a standard Linux server. However, there are some parameters that may not be included in the MySQL configuration
file and instead use the default values from the underlying database system—or they may have been set manually,
on-the-fly using the SET statement. For these parameters, since Docker can’t access the host system, you may need to
set them, manually.

• wsrep_node_address (page 253): A node will determine the default address from the IP address on the first
network interface. Containers cannot see the network interfaces on the host system. Therefore, you will need to
set this parameter to ensure the cluster is given the correct IP address for the node.

• wsrep_node_name (page 255): A node will determine the default host name from the system hostname. Con-
tainers have their own hostnames distinct from the host system.

Changes to the my.cnf file will not propagate into an existing container. Therefore, whenever you make changes to
the configuration file, run the build again to create a new image with the updated configuration file. Docker caches each
step of the build and only runs those steps that have changed when rebuilding. For example, using the Dockerfile
example above, if you rebuild an image after changing my.cnf, Docker will run only the last two steps.

Note: If you need Docker to rerun the entire build, use the --force-rm=true option.

Building a Container Image

Building an image simplifies everyting—the node installation, the configuration and the deployment process—by
reducing it to a single command. It will create a server instance where Galera Cluster is already installed, configured
and ready to start.

5.3. Container Deployments 133

Galera Cluster Documentation, Releases 3.x and 4.x

You can build a container node using the docker command-line tool like so:

docker build -t ubuntu:galera-node1 ./

When this command runs, Docker looks in the current working directory, (that is, ./), for the Dockerfile. It
then follows each command in the Dockerfile to build the image. When the build is complete, you can view the
addition among the available images by executing the following:

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu galera-node-1 53b97c3d7740 2 minutes ago 362.7 MB
ubuntu 14.04 ded7cd95e059 5 weeks ago 185.5 MB

You can see in the results here that there is a working node image available for use as a container. You would launch
it executing docker run at the command-line. You would repeat the build process on each server to create a node
container image for Galera Cluster.

You would then update the container tag to help differentiate between each node by executing something like this:

[root@node2]# docker build -t ubuntu:galera-node2 ./
[root@node3]# docker build -t ubuntu:galera-node3 ./

Deploying a Container

When you finish building an image, you are ready to launch the node container. For each node, start the container
using the Docker command-line tool with the run argument like so:

docker run -i -d --name Node1 --host node1 \
-p 3306:3306 -p 4567:4567 -p 4568:4568 -p 4444:4444 \
-v /var/container_data/mysql:/var/lib/mysql \
ubuntu:galera-node1

In this example, Docker launches a pre-built Ubuntu container tagged as galera-node1, which was built using
the example Dockerfile from above. The ENTRYPOINT parameter is set to /bin/mysqld so that the container
launches the database server when starting. You would modify the --name option in the example here for each node
container you start.

You’ll notice in the example here there are several -p options included. Those are described in the next section on
Firewall Settings. The -v option is described in the section after it on Persistent Data.

Note: The above command starts a container node meant to be attached to an existing cluster. If you are starting the
first node in a cluster, use the mysqld_bootstrap command. For more information, see Starting a Cluster.

Firewall Settings

When you launch the Docker container (that is, docker run as shown above), the series of -p options connect the
ports on the host system to those in the container. When the container is launched this way, nodes in the container
have the same level of access to the network as the node would if it were running on the host system.

Use these settings, though, when you run only one container on the server. If you are running multiple containers on
the server, you will need a load balancer to handle and direct incoming connections to individual nodes.

For more information on configuring the firewall for Galera Cluster, see Firewall Settings (page 214).

134 Chapter 5. Deployment

Galera Cluster Documentation, Releases 3.x and 4.x

Persistent Data

Docker containers are not meant to carry persistent data. When you close a container, the data it carries is lost. To
avoid this problem, you can link volumes in the container to directories on the host file system. This is done with the
-v option when you launch the container.

In the launch example above (that is, the docker run lines), the -v argument connects the /var/
container_data/mysql/ directory to /var/lib/mysql/ in the container. This replaces the local datadir
inside the container with a symbolic link to a directory on the host system. This ensures that you won’t lose data when
the container restarts.

Database Client

Once you have a container node running, you can execute additional commands on the container using the docker
exec command with the container name given with the --name parameter.

Using the example above, if you want access to the database client, you would run the following command:

docker exec -ti Node1 /bin/mysql -u root -p

Notice here that Node1 is the name given with the --name parameter in the example earlier.

Related Documents

• Firewall Settings (page 214)

• wsrep_node_address (page 253)

• wsrep_node_name (page 255)

Related Articles

• Starting a Cluster

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Firewall Configuration with PF (page 219)

• Galera Cluster for MySQL (page 46)

• MariaDB Galera Cluster (page 53)

• wsrep_node_name (page 255)

• wsrep_provider (page 259)

• wsrep_node_address (page 253)

5.3. Container Deployments 135

Galera Cluster Documentation, Releases 3.x and 4.x

• wsrep_node_name (page 255)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

5.3.2 Using Jails

In FreeBSD, jails provides a platform for securely deploying applications within virtual instances. You may find it
useful in portable deployments across numerous machines for testing and security.

Galera Cluster can run from within a jail instance.

Preparing the Server

Jails exist as isolated file systems within, but unaware of, the host server. In order to grant the node running within the
jail network connectivity with the cluster, you need to configure the network interfaces and firewall to redirect from
the host into the jail.

Network Configuration

To begin, create a second loopback interface for the jail. this allows you to isolate jail traffic from lo0, the host
loopback interface.

Note: For the purposes of this guide, the jail loopback is called lo1, if lo1 already exists on your system, increment
the digit to create one that does not already exist, (for instance, lo2).

To create a loopback interface, complete the following steps:

1. Using your preferred text editor, add the loopback interface to /etc/rc.conf:

Network Interface
cloned_interfaces="${cloned_interfaces} lo1"

2. Create the loopback interface:

service netif cloneup

This creates lo1, a new loopback network interface for your jails. You can view the new interface in the listing using
the following command:

$ ifconfig

Firewall Configuration

FreeBSD provides packet filtering support at the kernel level. Using PF you can set up, maintain and inspect the packet
filtering rule sets. For jails, you can route traffic from external ports on the host system to internal ports within the

136 Chapter 5. Deployment

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

jail’s file system. This allows the node running within the jail to have network access as though it were running on the
host system.

To enable PF and create rules for the node, complete the following steps:

1. Using your preferred text editor, make the following additions to /etc/rc.conf:

Firewall Configuration
pf_enable="YES"
pf_rules="/etc/pf.conf"
pflog_enable="YES"
pflog_logfile="/var/log/pf.log"

2. Create the rules files for PF at /etc/pf.conf

External Network Interface
ext_if="vtnet0"

Internal Network Interface
int_if="lo1"

IP Addresses
external_addr="host_IP_address"
internal_addr="jail_IP_address_range"

Variables for Galera Cluster
wsrep_ports="{3306,4567,4568,4444}"
table <wsrep_cluster_address> persist {192.168.1.1,192.168.1.2,192.168.1.3}

Translation
nat on $ext_if from $internal_addr to any -> ($ext_if)

Redirects
rdr on $ext_if proto tcp from any to $external_addr/32 port 3306 -> jail_IP_
→˓address port 3306
rdr on $ext_if proto tcp from any to $external_addr/32 port 4567 -> jail_IP_
→˓address port 4567
rdr on $ext_if proto tcp from any to $external_addr/32 port 4568 -> jail_IP_
→˓address port 4568
rdr on $ext_if proto tcp from any to $external_addr/32 port 4444 -> jail_IP_
→˓address port 4444

pass in proto tcp from <wsrep_cluster_address> to any port $wsrep_ports keep state

Replace host_IP_address with the IP address of the host server and jail_IP_address with the IP
address you want to use for the jail.

3. Using pfctl, check for any typos in your PF configurations:

pfctl -v -nf /etc/pf.conf

4. If pfctl runs without throwing any errors, start PF and PF logging services:

service pf start
service pflog start

The server now uses PF to manage its firewall. Network traffic directed at the four ports Galera Cluster uses is routed
to the comparable ports within the jail.

For more information on firewall configurations for FreeBSD, see Firewall Configuration with PF (page 219).

5.3. Container Deployments 137

Galera Cluster Documentation, Releases 3.x and 4.x

Creating the Node Jail

While FreeBSD does provide a manual interface for creating and managing jails on your server, (jail(8)), it can
prove cumbersome in the event that you have multiple jails running on a server.

The application ezjail facilitates this process by automating common tasks and using templates and symbolic links
to reduce the disk space usage per jail. It is available for installation through pkg. Alternative, you can build it through
ports at sysutils/ezjail.

To create a node jail with ezjail, complete the following steps:

1. Using your preferred text editor, add the following line to /etc/rc.conf:

ezjail_enable="YES"

This allows you to start and stop jails through the service command.

2. Initialize the ezjail environment:

ezjail-admin install -sp

This install the base jail system at /usr/jails/. It also installs a local build of the ports tree within the jail.

Note: While the database server is not available for FreeBSD in ports or as a package binary, a port of the
Galera Replication Plugin is available at databases/galera.

3. Create the node jail.

ezjail-admin create galera-node 'lo1|192.168.68.1'

This creates the particular jail for your node and links it to the lo1 loopback interface and IP address. Replace
the IP address with the local IP for internal use on your server. It is the same address as you assigned in the
firewall redirects above for /etc/pf.conf.

Note: Bear in mind that in the above command galera-node provides the hostname for the jail file system.
As Galera Cluster draws on the hostname for the default node name, you need to either use a unique jail name
for each node, or manually set wsrep_node_name (page 255) in the configuration file to avoid confusion.

4. Copy the resolve.conf file from the host file system into the node jail.

cp /etc/resolv.conf /usr/jails/galera-node/etc/

This allows the network interface within the jail to resolve domain names in connecting to the internet.

5. Start the node jail.

ezjail-admin start galera-node

The node jail is now running on your server. You can view running jails using the ezjail-admin command:

ezjail-admin list
STA JID IP Hostname Root Directory
--- ---- ------------- ------------ ----------------------
DR 2 192.168.68.1 galera-node /usr/jails/galera-node

138 Chapter 5. Deployment

Galera Cluster Documentation, Releases 3.x and 4.x

While on the host system, you can access and manipulate files and directories in the jail file system from /usr/
jails/galera-node/. Additionally, you can enter the jail directly and manipulate processes running within
using the following command:

root@FreeBSDHost:/usr/jails # ezjail-admin console galera-node
root@galera-node:~ #

When you enter the jail file system, note that the hostname changes to indicate the transition.

Installing Galera Cluster

Regardless of whether you are on the host system or working from within a jail, you can install Galera Cluster on
FreeBSD from a binary package, or build the database server from source code.

The specific build process that you need to follow depends on the database server that you want to use:

• Galera Cluster for MySQL (page 46)

• MariaDB Galera Cluster (page 53)

Due to certain Linux dependencies, the Galera Replication Plugin cannot be built from source on FreeBSD. Instead
you can use the port at /usr/ports/databases/galera or install it from a binary package within the jail:

pkg install galera

This install the wsrep Provider file in /usr/local/lib. Use this path in the configuration file for the ws-
rep_provider (page 259) parameter.

Configuration File

For the most part, the configuration file for a node running in a jail is the same as when the node runs on a standard
FreeBSD server. But, there are some parameters that draw their defaults from the base system. These you need to set
manually, as the jail is unable to access the host file system.

• wsrep_node_address (page 253) The node determines the default address from the IP address on the first network
interface. Jails cannot see the network interfaces on the host system. You need to set this parameter to ensure
that the cluster is given the correct IP address for the node.

• wsrep_node_name (page 255) The node determines the default name from the system hostname. Jails have their
own hostnames, distinct from that of the host system.

[mysqld]
user=mysql
#bind-address=0.0.0.0

Cluster Options
wsrep_provider=/usr/lib/libgalera_smm.so
wsrep_cluster_address="gcomm://192.168.1.1, 192.168.1.2, 192.16.1.3"
wsrep_node_address="192.168.1.1"
wsrep_node_name="node1"
wsrep_cluster_name="example_cluster"

InnoDB Options
default_storage_engine=innodb
innodb_autoinc_lock_mode=2
innodb_flush_log_at_trx_commit=0

(continues on next page)

5.3. Container Deployments 139

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

SST
wsrep_sst_method=rsync

If you are logged into the jail console, place the configuration file at /etc/my.cnf. If you are on the host system
console, place it at /usr/jails/galera-node/etc/my.cnf. Replace galera-node in the latter with the
name of the node jail.

Starting the Cluster

When running the cluster from within jails, you create and manage the cluster in the same manner as you would in the
standard deployment of Galera Cluster on FreeBSD. The exception being that you must obtain console access to the
node jail first.

To start the initial cluster node, run the following commands:

ezjail-admin console galera-node
service mysql start --wsrep-new-cluster

To start each additional node, run the following commands:

ezjail-admin console galera-node
service mysql start

Each node you start after the initial will attempt to establish network connectivity with the Primary Component and
begin syncing their database states into one another.

Related Documents

• Firewall Configuration with PF (page 219)

• Galera Cluster for MySQL (page 46)

• MariaDB Galera Cluster (page 53)

• wsrep_node_name (page 255)

• wsrep_provider (page 259)

• wsrep_node_address (page 253)

• wsrep_node_name (page 255)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Database Server Logs (page 150)

140 Chapter 5. Deployment

Galera Cluster Documentation, Releases 3.x and 4.x

• Notification Command (page 206)

• Using Status Variables (page 144)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

5.3. Container Deployments 141

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

142 Chapter 5. Deployment

CHAPTER

SIX

CLUSTER MONITORING

Occasionally, you may want or need to check on the status of the cluster. For instance, you may want to check the
state of nodes. You may want to check for network connectivity problems amongst nodes.

There are four methods available in monitoring cluster activity and replication health: query status variables through
a database client; check regularly related log files; use a monitoring application; or write a notification script.

• Using Status Variables (page 144)

In addition to the standard status variables in MySQL, Galera Cluster provides a series of its own status variables.
These will allow you to check node and cluster states, as well as replication health through the database client.

• Database Server Logs (page 150)

Queries entered through the database client will provide information on the current state of the cluster. However,
to check its history for more systemic issues, you need to check the logs. This section provides a guide to the
Galera Cluster parameter used to configure database logging to ensure it records the information you need.

• The Galera Manager (page 152)

If you have an account with Amazon Web Services (AWS) for server hosting, you can use Galera Manager to
create and configure easily Galera Clusters. Additionally, Galera Manager provides a graphical user interface
with charts for monitoring over one thousand cluster metrics: just configure it to track metrics you find most
useful.

• Notification Command (page 206)

Although checking logs and status variables may give you the information you need while logged into a node,
getting information from them is a manual process. Using the notification command, you can set the node to
call a script in response to changes in cluster membership or node status. You can use this to raise alerts and
adjust load balances. You can use it in a script for any situation in which you need the infrastructure to respond
to changes in the cluster.

You can also use Nagios for monitoring Galera Cluster. For more information, see Galera Cluster Nagios Plugin

Related Documents

• Database Server Logs (page 150)

• Notification Command (page 206)

• Using Status Variables (page 144)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

143

https://www.fromdual.com/galera-cluster-nagios-plugin-en

Galera Cluster Documentation, Releases 3.x and 4.x

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Notification Command (page 206)

• Reset Quorum (page 96)

• checking node status (page 146)

• wsrep_cert_deps_distance (page 315)

• wsrep_cluster_address (page 241)

• wsrep_cluster_conf_id (page 316)

• wsrep_cluster_name (page 242)

• wsrep_cluster_size (page 316)

• wsrep_cluster_state_uuid (page 317)

• wsrep_cluster_status (page 317)

• wsrep_connected (page 319)

• wsrep_local_send_queue_avg (page 329)

• wsrep_local_state_comment (page 330)

• wsrep_local_recv_queue_avg (page 327)

• wsrep_local_recv_queue_max (page 327)

• wsrep_local_recv_queue_min (page 328)

• wsrep_ready (page 333)

• wsrep_applier_threads (page 263)

• wsrep_slave_threads (page 264)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.1 Using Status Variables

From the database client, you can check the status of write-set replication throughout the cluster using standard queries.
Status variables that relate to write-set replication have the prefix wsrep_, meaning that you can display them all using
the following query:

144 Chapter 6. Cluster Monitoring

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

SHOW GLOBAL STATUS LIKE 'wsrep_%';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
wsrep_protocol_version	5
wsrep_last_committed	202
...	...
wsrep_thread_count	2
+------------------------+-------+

Note: In addition to checking status variables through the database client, you can also monitor for changes in cluster
membership and node status through wsrep_notify_cmd.sh. For more information on its use, see Notification
Command (page 206).

Checking Cluster Integrity

The cluster has integrity when all nodes in it receive and replicate write-sets from all other nodes. The cluster begins
to lose integrity when this breaks down, such as when the cluster goes down, becomes partitioned, or experiences a
split-brain situation.

You can check cluster integrity using the following status variables:

• wsrep_cluster_state_uuid (page 317) shows the cluster state UUID, which you can use to determine whether
the node is part of the cluster.

SHOW GLOBAL STATUS LIKE 'wsrep_cluster_state_uuid';

+--------------------------+--------------------------------------+
| Variable_name | Value |
+--------------------------+--------------------------------------+
| wsrep_cluster_state_uuid | d6a51a3a-b378-11e4-924b-23b6ec126a13 |
+--------------------------+--------------------------------------+

Each node in the cluster should provide the same value. When a node carries a different value, this indicates that
it is no longer connected to rest of the cluster. Once the node reestablishes connectivity, it realigns itself with
the other nodes.

• wsrep_cluster_conf_id (page 316) shows the total number of cluster changes that have happened, which you can
use to determine whether or not the node is a part of the Primary Component.

SHOW GLOBAL STATUS LIKE 'wsrep_cluster_conf_id';

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| wsrep_cluster_conf_id | 32 |
+-----------------------+-------+

6.1. Using Status Variables 145

https://galeracluster.com/galera-mgr/

Galera Cluster Documentation, Releases 3.x and 4.x

Each node in the cluster should provide the same value. When a node carries a different, this indicates that the
cluster is partitioned. Once the node reestablishes network connectivity, the value aligns itself with the others.

• wsrep_cluster_size (page 316) shows the number of nodes in the cluster, which you can use to determine if any
are missing.

SHOW GLOBAL STATUS LIKE 'wsrep_cluster_size';

+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| wsrep_cluster_size | 15 |
+--------------------+-------+

You can run this check on any node. When the check returns a value lower than the number of nodes in your
cluster, it means that some nodes have lost network connectivity or they have failed.

• wsrep_cluster_status (page 317) shows the primary status of the cluster component that the node is in, which
you can use in determining whether your cluster is experiencing a partition.

SHOW GLOBAL STATUS LIKE 'wsrep_cluster_status';

+----------------------+---------+
| Variable_name | Value |
+----------------------+---------+
| wsrep_cluster_status | Primary |
+----------------------+---------+

The node should only return a value of Primary. Any other value indicates that the node is part of a nonoper-
ational component. This occurs in cases of multiple membership changes that result in a loss of Quorum or in
cases of split-brain situations.

Note: If you check all nodes in your cluster and find none that return a value of Primary, see Resetting the
Quorum (page 96).

When these status variables check out and return the desired results on each node, the cluster is up and has integrity.
What this means is that replication is able to occur normally on every node. The next step then is checking node status
(page 146) to ensure that they are all in working order and able to receive write-sets.

Checking the Node Status

In addition to checking cluster integrity, you can also monitor the status of individual nodes. This shows whether
nodes receive and process updates from the cluster write-sets and can indicate problems that may prevent replication.

• wsrep_ready (page 333) shows whether the node can accept queries.

SHOW GLOBAL STATUS LIKE 'wsrep_ready';

+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wsrep_ready | ON |
+---------------+-------+

When the node returns a value of ON it can accept write-sets from the cluster. When it returns the value OFF,
almost all queries fail with the error:

146 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

ERROR 1047 (08501) Unknown Command

• wsrep_connected (page 319) shows whether the node has network connectivity with any other nodes.

SHOW GLOBAL STATUS LIKE 'wsrep_connected';

+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| wsrep_connected | ON |
+-----------------+-------+

When the value is ON, the node has a network connection to one or more other nodes forming a cluster compo-
nent. When the value is OFF, the node does not have a connection to any cluster components.

Note: The reason for a loss of connectivity can also relate to misconfiguration. For instance, if the node uses
invalid values for the wsrep_cluster_address (page 241) or wsrep_cluster_name (page 242) parameters.

Check the error log for proper diagnostics.

• wsrep_local_state_comment (page 330) shows the node state in a human readable format.

SHOW GLOBAL STATUS LIKE 'wsrep_local_state_comment';

+---------------------------+--------+
| Variable_name | Value |
+---------------------------+--------+
| wsrep_local_state_comment | Joined |
+---------------------------+--------+

When the node is part of the Primary Component, the typical return values are Joining, Waiting on
SST, Joined, Synced or Donor. If the node is part of a nonoperational component, the return value is
Initialized.

Note: If the node returns any value other than the one listed here, the state comment is momentary and transient.
Check the status variable again for an update.

In the event that each status variable returns the desired values, the node is in working order. This means that it is
receiving write-sets from the cluster and replicating them to tables in the local database.

Checking the Replication Health

Monitoring cluster integrity and node status can show you issues that may prevent or otherwise block replication.
These status variables will help in identifying performance issues and identifying problem areas so that you can get
the most from your cluster.

Note: Unlike other the status variables, these are differential and reset on every FLUSH STATUS command.

Galera Cluster triggers a feedback mechanism called Flow Control to manage the replication process. When the local
received queue of write-sets exceeds a certain threshold, the node engages Flow Control to pause replication while it
catches up.

6.1. Using Status Variables 147

Galera Cluster Documentation, Releases 3.x and 4.x

You can monitor the local received queue and Flow Control using the following status variables:

• wsrep_local_recv_queue_avg (page 327) shows the average size of the local received queue since the last status
query.

SHOW STATUS LIKE 'wsrep_local_recv_queue_avg';

+--------------------------+----------+
| Variable_name | Value |
+--------------------------+----------+
| wsrep_local_recv_que_avg | 3.348452 |
+--------------------------+----------+

When the node returns a value higher than 0.0 it means that the node cannot apply write-sets as fast as it
receives them, which can lead to replication throttling.

Note: In addition to this status variable, you can also use wsrep_local_recv_queue_max (page 327) and ws-
rep_local_recv_queue_min (page 328) to see the maximum and minimum sizes the node recorded for the local
received queue.

• wsrep_flow_control_paused (page 321) shows the fraction of the time, since FLUSH STATUS was last called,
that the node paused due to Flow Control.

SHOW STATUS LIKE 'wsrep_flow_control_paused';

+---------------------------+----------+
| Variable_name | Value |
+---------------------------+----------+
| wsrep_flow_control_paused | 0.184353 |
+---------------------------+----------+

When the node returns a value of 0.0, it indicates that the node did not pause due to Flow Control during this
period. When the node returns a value of 1.0, it indicates that the node spent the entire period paused. If the
time between FLUSH STATUS and SHOW STATUS was one minute and the node returned 0.25, it indicates
that the node was paused for a total 15 seconds over that time period.

Ideally, the return value should stay as close to 0.0 as possible, since this means the node is not falling behind
the cluster. In the event that you find that the node is pausing frequently, you can adjust the wsrep_slave_threads
(page 264) or wsrep_applier_threads (page 263) parameter or you can exclude the node from the cluster.

• wsrep_cert_deps_distance (page 315) shows the average distance between the lowest and highest sequence
number, or seqno, values that the node can possibly apply in parallel.

SHOW STATUS LIKE 'wsrep_cert_deps_distance';

+--------------------------+---------+
| Variable_name | Value |
+--------------------------+---------+
| wsrep_cert_deps_distance | 23.8889 |
+--------------------------+---------+

This represents the node’s potential degree for parallelization. In other words, the optimal value you can use
with the wsrep_slave_threads (page 264) or wsrep_applier_threads (page 263) parameter, given that there is no
reason to assign more replica threads than transactions you can apply in parallel.

148 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Detecting Slow Network Issues

While checking the status of Flow Control and the received queue can tell you how the database server copes with
incoming write-sets, you can check the send queue to monitor for outgoing connectivity issues.

Note: Unlike other the status variables, these are differential and reset on every FLUSH STATUS command.

wsrep_local_send_queue_avg (page 329) shows an average for the send queue length since the last FLUSH STATUS
query.

SHOW STATUS LIKE 'wsrep_local_send_queue_avg';

+----------------------------+----------+
| Variable_name | Value |
+----------------------------+----------+
| wsrep_local_send_queue_avg | 0.145000 |
+----------------------------+----------+

Values much greater than 0.0 indicate replication throttling or network throughput issues, such as a bottleneck on the
network link. The problem can occur at any layer from the physical components of your server to the configuration of
the operating system.

Note: In addition to this status variable, you can also use wsrep_local_send_queue_max (page 329) and ws-
rep_local_send_queue_min (page 330) to see the maximum and minimum sizes the node recorded for the local send
queue.

Related Documents

• Notification Command (page 206)

• Reset Quorum (page 96)

• checking node status (page 146)

• wsrep_cert_deps_distance (page 315)

• wsrep_cluster_address (page 241)

• wsrep_cluster_conf_id (page 316)

• wsrep_cluster_name (page 242)

• wsrep_cluster_size (page 316)

• wsrep_cluster_state_uuid (page 317)

• wsrep_cluster_status (page 317)

• wsrep_connected (page 319)

• wsrep_local_send_queue_avg (page 329)

• wsrep_local_state_comment (page 330)

• wsrep_local_recv_queue_avg (page 327)

• wsrep_local_recv_queue_max (page 327)

• wsrep_local_recv_queue_min (page 328)

• wsrep_ready (page 333)

6.1. Using Status Variables 149

Galera Cluster Documentation, Releases 3.x and 4.x

• wsrep_applier_threads (page 263)

• wsrep_slave_threads (page 264)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• cert.log_conflicts (page 283)

• wsrep_debug (page 245)

• wsrep_log_conflicts (page 250)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.2 Database Server Logs

Galera Cluster provides the same database server logging features available to MySQL, MariaDB and Percona XtraDB,
depending on which you use. By default, it writes errors to a <hostname>.err file in the data directory. You can
change this in the my.cnf configuration file using the log_error option, or by using the --log-error parameter.

Log Parameters

Galera Cluster provides parameters and wsrep options that allow you to enable error logging on events that are specific
to the replication process. If you have a script monitoring the logs, these entries can give you information on conflicts
occurring in the replication process.

• wsrep_log_conflicts (page 250): This parameter enables conflict logging for error logs. An example would be
when two nodes attempt to write to the same row of the same table at the same time.

• cert.log_conflicts (page 283): This wsrep Provider option enables logging of information on certification failures
during replication.

150 Chapter 6. Cluster Monitoring

https://galeracluster.com
https://dev.mysql.com/doc/refman/8.4/en/server-options.html#option_mysqld_log-error
https://galeracluster.com/galera-mgr/

Galera Cluster Documentation, Releases 3.x and 4.x

• wsrep_debug (page 245): This parameter enables debugging information for the database server logs.

Warning: In addition to useful debugging information, this parameter also causes the database server
to print authentication information, (that is, passwords) to the error logs. Do not enable it in production
environments as it is a security vulnerability.

You can enable these through the my.cnf configuration file. The excerpt below is an example of these options and
how they are enabled:

wsrep Log Options
wsrep_log_conflicts=ON
wsrep_provider_options="cert.log_conflicts=ON"
wsrep_debug=ON

Additional Log Files

Whenever a node fails to apply an event on a replica node, the database server creates a special binary log file of the
event in the data directory. The naming convention the node uses for the filename is GRA_*.log.

Related Documents

• cert.log_conflicts (page 283)

• wsrep_debug (page 245)

• wsrep_log_conflicts (page 250)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

6.2. Database Server Logs 151

Galera Cluster Documentation, Releases 3.x and 4.x

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3 The Galera Manager

The Galera Manager is a graphical user interface for provisioning and monitoring Galera Clusters in various environ-
ments, like Amazon Web Services (AWS) or on-premises hardware. It allows an administrator to add nodes easily,
and without having to configure each node, manually. Perhaps more useful is that Galera Manager provides charts for
monitoring host and database metrics to ensure the proper and efficient functioning of a Galera Cluster. There are over
a thousand metrics from which to choose. You may use any standard web browser for accessing Galera Manager, to
administer and monitor clusters.

This section of the Codership documentation provides detailed information and instructions on how to install and
configure Galera Manager. Below is a brief summary of each aspects of the process to start using Galera Manager,
with each heading linked to the related page for much more information—there are also links in the margin to all
pages of the Galera Manager documentation. However, if you are an advanced administrator and are confident in your
abilities, this page will provide you a summary of what you need to install and start using Galera Manager.

Install Galera Manager

The Galera Manager Installer is provided to make installation and configuration of Galera Manager as simple as
possible. This section is only a brief summary of the procedure. Some of this text contains links to other pages where
you will find more detailed information on each step.

Choose or Create a Galera Manager Host

Galera Manager is a server program (it serves client requests from both the cluster nodes and graphical
frontend) so it should be installed on a host (server or other computer) which can be connected to from
both the prospective cluster nodes and a computer running the graphical client. A laptop behind a WiFi
NAT is a poor choice. You may use a local computer (such as a desktop or laptop computer), but most
administrators would want to use a computer in the same network as the cluster nodes. For example, if
the cluster is in EC2, you’d want to use an EC2 instance, if it is on premises, then you’d use a host in the
on-premises network. It is also possible to use one of the cluster nodes, but it is recommended to have a
dedicated Galera Manager Host.

At this point Galera Manager Installer supports the following x86_64 Linux distributions: Ubuntu 18.04
and 20.04, CentOS 7, Debian 10 (“buster”) and Debian 11 (“bullseye”).

Future releases of Galera Manager Installer may support other platforms. For now, it is recommended
you use one of these distributions for Galera Manager Host. The Galera Manager itself will, however,

152 Chapter 6. Cluster Monitoring

https://galeracluster.com
https://galeracluster.com/galera-mgr/

Galera Cluster Documentation, Releases 3.x and 4.x

manage or monitor clusters that may run on a different platform and nodes that will run either MySQL or
MariaDB.

Download the Installer

After you’ve decided on and prepared the Galera Manager Host, you will need to download the Installer
from Codership’s site at this address:

https://galeracluster.com/galera-manager/gm-installer.

Run the Installer

Once the Installer has been downloaded, run it with superuser privileges to install Galera Manager. It
will ask you some basic information: an administrative password, as well as a domain name and a site
certificate, if you have these and want to use them.

chmod a+x gm-installer && sudo ./gm-installer install

When the Installer is finished, the gmd daemon will be running on the Galera Manager Host. The Installer
will print out some bookkeeping information that you may want to save for future reference and also the
address at which you can connect to gmd from your browser and start using it:

INFO[0223] Galera Manager installation finished. Enter http://10.0.3.73 in a
→˓web browser to access.

Check the Installing Galera Manager (page 155) documentation page for more details on using the In-
staller and explanations of the questions you will be asked, as well as suggestions on how to respond to
them. You might also read the Galera Manager Daemon (gmd) (page 168) page.

Deploying a Cluster

Having installed Galera Manager, you are now ready to use it to deploy a Galera Cluster, including adding and config-
uring nodes.

Access Galera Manager

In the address field of your web browser, enter the address provided in the Installer output.

If you didn’t provide a certificate, your web browser may try to protect you from accessing the address.
Push past those warnings until you reach the login screen. Then enter the administrative user name and
password you gave when installing.

Create a Cluster & Add Nodes

After you log into Galera Manager, you may create a cluster, and then nodes to it. Typically, one would
start with three nodes—you can add more nodes later, or delete some if you added too many. You will
be able to choose between several node host types (locallxd, unmanaged, ec2), host OS variants
and database flavors. When you create a cluster, be sure to provide an public encryption key to facilitate
manual troubleshooting via SSH connection.

6.3. The Galera Manager 153

https://galeracluster.com/galera-manager/gm-installer

Galera Cluster Documentation, Releases 3.x and 4.x

Log in to cluster

If you created a cluster from scratch, you will need to get the login credentials (that is, user name, host
address, password) to access one of the nodes with a MySQL client. This can be found by clicking on one
of the nodes in Galera Manager, then its Configuration tab. There you will find the DB Address and the
DB Root Password for accessing the database system.

You can find more details on deploying a cluster on the Deploying a Cluster in Galera Manager (page 172) and the
Adding Nodes with Galera Manager (page 180) documentation pages. You may also find the Adding Users to Galera
Manager (page 187) page helpful at some point.

Monitor a Cluster

With a Galera Cluster and nodes in place, including the data loaded and accessible to users, you can monitor your
cluster using charts of database and host metrics in Galera Manager. Still, you may want to configure these charts or
add more to suit your particular needs.

Configure Charts

By default, there are a few charts configured for commonly watched metrics. However, there are over
one-thousand metrics that you may track. Click on the cluster in Galera Manager and you will see the
default charts. You may click the X at the top right of any chart to remove it. To add a chart, click the
vertical ellipsis to access a pull-down menu where you can select Add Chart. A dialog box will appear
for you to choose the metric you want to monitor.

For more information on adding charts and related information, see the Monitoring a Cluster with Galera Manager
(page 196) documentation page.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

154 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3.1 Installing Galera Manager

Galera Manager host requirements.

To use Galera Manager, you need to install it on a computer that

a) can be accessed from the cluster nodes you want to manage or monitor;

b) can be accessed from the computer where you’d want to display the GUI.

Normally that would be a computer in the same network as the prospective cluster nodes. Additionally you may want
to consider providing sufficient disk space for the logging and metrics data. Technically Galera Manager can run on
one of the cluster nodes, but it is recommended to use a dedicated machine.

Galera manager can use SSL encryption for all communications. However this requires the host to be accessible via
a domain name, not just an IP address. Externally resolvable domain name is required to utilize external Certificate
Authority.

Download the Installer

The Installer is a simple installation program for installing Galera Manager. When you run it, you will be asked
a series of questions about configuring Galera Manager. After that it will download, install and configure required
software packages. When it is finished, the gmd daemon will be started on the Installer Host, allowing you to use this
server to deploy new Galera clusters in different environments, as well as monitor already existing clusters.

Below are more details on these steps to download and run the Installer. The questions you will be presented when
installing are fairly self-explanatory. However, you may want to read this page before beginning, in case there are
questions about which you want to know more before starting the installation.

6.3. The Galera Manager 155

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

To install Galera Manager, you will need to download the Installer to the computer chosen as the Galera Manager
host. Currently Installer runs on the following x86_64 Linux distributions: Ubuntu 20.04 and Ubuntu 22.04, Debian
11 (“bullseye”) and Debian 12 (“bookworm”), RedHat 8 and RedHat 9. Eventually, the Installer will be made available
for other distributions.

After you’ve decided on and prepared the Galera Manager Host, you will need to download the Installer from Coder-
ship’s site at this address:

https://galeracluster.com/galera-manager/gm-installer.

Listing 1: Making Galera Manager Installer Executable (Example 1)

chmod +x gm-installer

Having downloaded the installation program and made it executable, you are ready to run the Installer to install Galera
Manager.

Start the Installer

There are two options available at this time when starting the Installer: install and certificates. The
install option is necessary to install Galera Manager. The certificates option is used to generate your
own, self-signed SSL certificates for encryption. Both options may be given together.

Note that to safely use SSL encryption Galera Manager host needs to be accessible through a valid DNS name (domain
names given by Amazon EC2 do not count). The Installer will refuse to configure SSL encryption if the host has only
an IP address. Galera Manager will retain full functionality working via unencrypted links.

Below is how you would start the Installer with only the install option. You’ll have to run it with superuser
privileges:

Listing 2: Starting Installation of Galera Manager Installer (Example 2)

sudo ./gm-installer install

After starting the Installer, you will first be asked to accept the Galera Manager End-User Licensing Agreement
(EULA). Below is how this question will be presented—although it might change slightly in future releases:

Listing 3: Message about User Agreement from the Installer (Example
3)

To use GMD you must accept EULA.
Press [a] to accept it, [r] to read the EULA text, [n] to reject EULA.

If you are willing to accept the agreement, enter a. If you’d like to read the agreement, enter r and it will be displayed
on the screen—along with the opportunity again to accept or reject the agreement. You can also read the agreement
(page 166) in the documentation before even starting to install.

User Names & Passwords

Next you will be asked for Galera Manager repository address. If you’ve been given a link to a private repository, you
will have to enter your user name and password for the repository. Then you will be asked for the login and password
of the initial administrator of Galera Manager. You may want to ensure you have answers to the following questions:

156 Chapter 6. Cluster Monitoring

https://galeracluster.com/galera-manager/gm-installer

Galera Cluster Documentation, Releases 3.x and 4.x

Listing 4: Installation Credential Questions from the Installer (Example
4)

GMD Package Repository URL (blank for default):
GMD Package Repository User:
GMD Package Repository Password:
GMD Admin User Login [admin]:
GMD Admin Password:

The default user name is admin. Enter whatever password you’d like to use for the administrator. You’ll be able to
remove this user later and add a replacement administrator later, as well as add other users with lesser privileges. This
is covered on the Adding Users to Galera Manager (page 187) page.

Domains & Certificates

You’ll next need to provide either an IP address or a domain name for Galera Manager, the address on which you are
running the Installer. This is the server where you will be accessing Galera Manager. Here are the related questions
you will be presented:

Listing 5: Installer Messages about Site Address and Certification (Ex-
ample 5)

By what domain name or IP address this service will be reached?
(Note that an externally resolvable domain name is needed to use an external
Certification Authority, otherwise we will have to resort to self-signed
certificates for SSL if encryption is required):
Enter your domain name or IP of the server:

An IP address works well, but you won’t be able to utilize an external certification authority, neither you will be able
to use self-signed certificates.

Listing 6: Installer Warning using an IP Address (Example 6)

Since you entered an IP address, SSL won't be available.

As this notification implies, SSL won’t be available if Galera Manager host does not have a domain name.

If you chose to provide a resolvable domain name for Galera Manager host, you will have several options to set up
SSL encryption (HTTPS protocol) to protect all Galera Manager connections (from both the GUI client and cluster
nodes):

Listing 7: Installer Asking to Use a Secure Protocol (Example 7)

Enter your domain name or IP of the server: gm.example.com
Enable https? [Y/n]
Use LetsEncrypt Certbot to autogenerate the certificates [Y/n]:

Answering Yes to the above question will set up automatic certificates generation and renewal using LetsEncrypt
site as a Certificate Authority. NOTE: not all domain names are accepted by LetsEncrypt, such as domain names
autogenerated by AWS EC2 are not. If you want to set up your own Certificate Authority and/or use your own
certificates, answer No and you will be offered to provide them:

6.3. The Galera Manager 157

Galera Cluster Documentation, Releases 3.x and 4.x

Listing 8: Installer Questions about SSL credentials (Example 8)

Use LetsEncrypt Certbot to autogenerate the certificates [Y/n]: n
Do you want to provide your own SSL CA? [y/N] y
Use your own SSL certificate (y), or let installer generate one (n)? [y/N] y
SSL CA Certificate [ca.crt]:
SSL CA Certificate Key [ca.key]:
SSL Host Certificate [ssl.crt]:
SSL Host Certificate Key [ssl.key]:

NOTE: if you want to specify your own Certificate Authority, you need to make sure that it is known to your GUI
frontend as well, otherwise it won’t be able to confirm the validity of the Galera Manager certificate and most likely
will refuse to connect with the warning about security risk.

Also you will be responsible to re-generate your own SSL certificate after it expires.

Closing Messages

After you finish answering all of the questions presented to you by the Installer, it will install and configure the
software needed and start Galera Manager. You’ll see messages regarding this pass by on the screen. At the end, if it
is successful, you will see a message like this:

Listing 9: Final Messages after Successfully Installing Galera Manager
(Example 9)

INFO[0223] Galera Manager installation finished. Enter http://10.0.3.73 in a web
→˓browser to access. Please note, you chose to use an unencrypted http protocol, such
→˓connections are prone to several types of security issues. Always use only trusted
→˓networks when connecting to the service.
INFO[0223] Logs DB url: http://10.0.3.73:8081
Metrics DB url: http://10.0.3.73:8082
IMPORTANT: ensure TCP ports 80, 8081, 8082 are open in firewall.
INFO[0223] Below you can see Logs DB credentials (if once asked):
DB name: gmd
DB user: gmd
DB password: yAl4p84vR8
The installation log is located at /tmp/gm-installer.log

Note the ports that need to be opened on Galera Manager host.

TCP Ports

Regarding ports, notice the line in the example above about TCP ports 80, 8081, 8082. You’ll need to make sure ports
8081, 8082 are accessible from the prospective nodes, and port 80 - from the GUI client.

If you deploy Galera Manager on AWS, those ports are closed by default. Go to the EC2 console in AWS, and click
on Security Groups in the left margin. Then look for the security group for the server on which you installed Galera
Manager. Edit the Inbound Rules for that group to open those ports (see the screenshot below).

In the example in this screenshot, notice that we set port 22 to the administrator’s IP address to restrict access, in
addtion to requiring an encryption key to log in. The other ports are accessible from anywhere so that you can access
Galera Manager from wherever you and other administrators may be located. You may have noticed that port 3306 or
other ports used by MySQL and Galera are not included in the Inbound Rules above. Those are needed by the nodes,
not Galera Manager. When you add nodes, Galera Manager will add them to each host’s Inbound Rules. You’ll find
more on these nuances by reading the AWS Ports with Galera Manager (page 162) page of this documentation.

158 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 1: AWS Inbound Rules for Galera Manager (Figure 1)

Logs & Installation Failure

In the last lines of the installation message, there’s also the login name and password for accessing the InfluxDB
database for the logs for the nodes. You wouldn’t normally need to know these unless you are trying to debug some-
thing very unusual. They’re used by Galera Manager behind-the-scenes. The logs are viewable within Galera Manager.

Should you encounter problems installing Galera Manager, though, check the installation log. It will be located in
your server’s temporary directory (for example, /tmp). You can see the file path and name of the installation log in
the last line of a successful installation, as shown above. It is a simple and tidy text file that’s easy to review, if you
need it.

Galera Manager Daemon

Once you’ve answered all of the questions presented to you by the Installer, it will finish the installation and start the
gmd daemon. You can enter something like the following from the command-line to check that it is running:

Listing 10: Checking if Galera Manager Daemon is Running (Example
10)

ps -e |grep gmd

30472 ? 00:00:40 gmd

The results showing the process identification number and the amount of time gmd has been running will be different
on your server. For more information on the gmd daemon, or to learn how to make changes to some of its settings, see
the documentation page called, Galera Manager Daemon (gmd) (page 168).

Connect to Galera Manager

After you’ve finished installing, you may log into Galera Manager with a standard web browser by entering the address
where you installed it. At the end of the installation, there was a message like this one:

6.3. The Galera Manager 159

Galera Cluster Documentation, Releases 3.x and 4.x

Listing 11: Installation Message containing URL for Galera Manager
(Example 11)

INFO[0213] Galera Manager installation complete.
Direct your browser to http://34.217.114.37 to use it.
...

In the example here, a domain name wasn’t used during the installation, so the URL has an IP address. If you provided
a domain name, though, you would enter that domain name in your browser: https://my-domain.com.

If you didn’t enable https when installing, you would instead start the URL with http (that is, without the s). Be
aware that without that extra security layer, your connections will be vulnerable. Therefore, when using http for
Galera Manager, you should use only trusted networks.

Shortly after you enter the URL for Galera Manager into your web browser, you will see a simple login screen like the
one below. Here you will enter the GMD Admin User name and password you provided during the installation.

Fig. 2: Galera Manager Login (Figure 2)

At the start, after you log into Galera Manager for the first time, you will see only a fairly empty screen that shows
something like the screenshot below. This is because you haven’t yet created a cluster or added any nodes.

Fig. 3: New Galera Manager Installation (Figure 3)

To create a cluster, you would click on the plus-sign icon, or the text below the box where it says, Create New Cluster.
The process for adding a cluster and nodes is covered on the Deploying a Cluster in Galera Manager (page 172)
documentation page. For information on upgrading Galera Manager, see the Upgrading Galera Manager (gmd)
(page 204) page.

Galera Manager Documents

160 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

• Getting Started (page 152)

• Installing (page 155)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3. The Galera Manager 161

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

6.3.2 AWS Ports with Galera Manager

There are several ports that Galera Manager uses to communication with the hosts in a cluster, as well as the ports that
the nodes in a Galera Cluster use to communicate among themselves—and clients use to communicate with MySQL
or MariaDB. There are also ports administrators need to access Galera Manager and the hosts.

You’ll have to modify the Security Group on AWS (Amazon Web Services) for the Instance on which you installed
Galera Manager. In that Security Group, you will have to add Inbound Rules for each of the ports that Galera Manager
needs. A Security Group will be generated automatically by Galera Manager for each host added to a cluster, but you
may want to edit each one, or you may want consolidate those Security Groups by creating one for all hosts in the
cluster.

Below is information on ports used by Galera Manager, followed by information on the ports used by the hosts. See
the Installing Galera Manager (page 155) for more information on installing Galera Manager.

Galera Manager Ports

When you successfully completed the installation of Galera Manager using the Installer, the final message displayed
mentions the TCP ports used by Galera Manager. Below are excerpts from that message, showing the lead-in and the
message about ports:

Listing 12: Closing Messages from Galera Manager Installer (Example
1)

INFO[0213] Galera Manager installation complete.
Direct your browser to https://34.217.114.37 to use it.
Since there was no publicly resolvable domain name provided,
we'll be using self-signed SSL certificate.
You will be responsible to re-generate it after it expires.
Also, if the browser warns about security risk when connecting
to service for the first time, you should choose to "continue".
...

Please make sure you have TCP ports 80, 443, 8091, 8092 open in the server firewall.

As the highlighted line at the bottom here says, you will need to make sure the TCP ports 80, 443, 8091, 8092 are
open. This could be on a local computer or on an AWS Instance on which you’ve installed Galera Manager.

Ports 80 and 443 are used to access Galera Manager through a web browser. Port 8091 is used by gmd to access
InfluxDB for logging, and port 8092 is used by gmd to access Prometheus for cluster and node metrics, both of which
are installed by the Installer.

To open these ports on AWS, go to the EC2 console, and click on Security Groups in the left margin. Then look for
the Security Group for the Instance on which you installed Galera Manager. Edit the Inbound Rules for that group to
open those ports. When you are finished, the Inbound Rules will look something like the screenshot below:

In the example in this screenshot, these ports can be accessed from anywhere. The user will still need the user name
and password to access the particular service. Having these ports accessible like this will allow you, and others you
designate, to monitor your cluster from wherever you or they might be. If you do not need this flexibility, you could
limit all of these ports to the specific IP addresses from where they would be accessed—just as you might normally
limit ssh access for port 22 to the IP address of the administrator who has authority to log into the server.

Incidentally, the Installer message shown above is the result of having chosen to enable https. If you had chosen
not to enable it, though, the list of ports to open in AWS will be different:

162 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 4: AWS Inbound Rules for Galera Manager (Figure 1)

Listing 13: Excerpt from Installer listing Ports to Open (Example 2)

...
Please make sure you have TCP ports 80, 8081, 8082 open in the server firewall.

Only port 80 is used to access Galera Manager from a web broswer. Port 8081 is used by gmd to access InfluxDB; port
8082 is used for Prometheus. Since you didn’t enable https, you will have to open these three ports in the Security
Group for the Instance on which you’ve installed Galera Manager. But in this case, you do not need also to enable
ports 443, 8091, and 8092.

You may have noticed when looking at the lists of ports above and in Figure 1 that they do not include port 3306 and
other ports used by MySQL, MariaDB and Galera Cluster. Galera Manager does not need them to create and monitor
a cluster and nodes. Those ports are needed on the hosts of the nodes. So separate Security Groups will be needed for
them.

Host & Node Ports

After you create a cluster within Galera Manager, and then add nodes to that cluster, Galera Manager will create
Instances or hosts for each node, and a Security Group in AWS with Inbound Rules for each host. These rules will
open the ports needed for gmd on the Galera Manager server to communicate with the nodes, as well as the normal
ports required by the nodes within a Galera Cluster to communicate with each other, in addition to ports for users and
other clients need to communicate with MySQL or MariaDB.

The screenshot in Figure 2 below shows an example of a Security Group for a host created with Galera Manager for a
node in a cluster:

Notice this Security Group includes ports 8091 and 8092, which are necessary for Galera Manager to communicate
with the host related to host metrics and llogs. Port 3036 is used by users and clients to communicate with MySQL
or MariaDB to access the databases. The other three ports are used by Galera Cluster and the nodes to communicate
with each other and synchronize lagging or new nodes that join the cluster.

You might be tempted to tighten security more, to create one Security Group to be used by all hosts and in it to
specify the IP addresses of each node for ports 4444, 4567, and 4568—perhaps because of the default description, No
Restructions for each of those rules. Along these lines, you might also change ports 9100 - 9104 to the IP address of
wherever Galera Manager or gmd is running. You would have to leave port 3306 accessible from anywhere, though,
so that MySQL users and clients can access the databases.

6.3. The Galera Manager 163

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 5: AWS Inbound Rules for a Host (Figure 2)

If you were to do all of that, make all of those changes to the Source IP addresses, it would like something like what
you see in the screenshot in Figure 3 below:

Fig. 6: AWS Security Group for All Hosts (Figure 3)

That looks professional and is in a sense more secure. However, it takes away from the flexibility of using Galera
Manager for adding and removing nodes, if you have to add and delete rules manually for each host, and set the
new hosts to this Security Group. Given that the traffic between Galera Manager and the hosts is already very secure
already, limiting the IP addresses might be overkill. Should you decide that you want this extra security and that it is
worth the effort, you probably won’t have to do it in future releases of Galera Manager, as it is on the list of features
to add.

For more on the nuances and configuring some of the background settings of Galera Manager, see the Galera Manager
Daemon (gmd) (page 168) page of this documentation.

164 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3. The Galera Manager 165

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

6.3.3 Galera Manager End-User License Agreement (EULA)

THE SOFTWARE LICENSE TERMS CONTAINED HEREIN (THE “LICENSE TERMS”) CONSTITUTE A LE-
GAL AND BINDING AGREEMENT BETWEEN YOU (“YOU” OR “CUSTOMER”) AND CODERSHIP OY
(“COMPANY”). BY DOWNLOADING THE SOFTWARE (“GALERA MANAGER”) AND/OR INSTALLING
AND USING CODERSHIP OY SOFTWARE (THE “PRODUCT”), YOU ACCEPT AND AGREE TO BE BOUND
BY THE TERMS OF THIS AGREEMENT. READ IT CAREFULLY BEFORE COMPLETING THE INSTALLA-
TION PROCESS AND USING THE PRODUCT.

IF YOU DO NOT AGREE TO BE BOUND BY THESE TERMS, OR THE PERSON OR ENTITY INSTALLING
AND/OR USING THE PRODUCT DOES NOT HAVE AUTHORITY TO BIND THE CUSTOMER TO THESE
LICENSE TERMS, THEN DO NOT INSTALL AND/OR USE THE PRODUCTS.

1. Grant of License and Restrictions. Subject to the License Terms, Company grants Customer a
non-sublicensable, non-exclusive right to use the Product strictly in accordance with the related
user documentation and specification sheets (collectively, the “Documentation”) and any terms and
procedures Company may prescribe from time to time. Company retains complete ownership of the
Product and copies. The Customer must maintain the Copyright Notice and any other notices that
appear on the Product on any copies and any media. Customer will not (and will not allow any third
party to:

i. reverse engineer or attempt to discover any source code or underlying ideas or algorithms of
any Product,

ii. provide, lease, lend, use for time sharing or service bureau purposes or otherwise use or allow
others to use the Product for the benefit of any third party, or (iii) use any Product, or allow the
transfer, transmission, export, or re-export of any Products or portion thereof in violation of any
export control laws or regulations administered by the U.S. Commerce Department, OFAC, or
any other government agency.

All the limitations and restrictions on the Products in these License Terms also apply to the Documenta-
tion.

2. Termination. This Agreement and all licenses hereunder may be terminated by the Company at any
time if the Customer fails to comply with any term of this Agreement. Upon termination, Customer
shall immediately cease all use of all affected Products and return or destroy all copies of all affected
Products and all portions thereof and so certify to the Company in writing. Except as otherwise
expressly provided herein, the terms of this Agreement shall survive termination. Termination is
not an exclusive remedy and all other remedies will be available to the Company whether or not
termination occurs.

3. Limitation of Liability. THE PRODUCT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. FURTHER,
THE COMPANY DOESNOT WARRANT RESULTS OF USE OR THAT THE PRODUCT IS
BUG FREE OR THAT THEIR USE WILL BE UNINTERRUPTED. THE COMPANY FUR-
THER SHALL NOT BE RESPONSIBLE FOR ANY COST OF PROCUREMENT OF SUBSTI-
TUTE GOODS, TECHNOLOGY, SERVICES OR RIGHTS, FOR ANY INCIDENTAL OR CON-
SEQUENTIAL DAMAGES, FOR INTERRUPTION OF USE OR LOSS OR CORRUPTION OF
DATA.

4. Miscellaneous. Neither this Agreement nor the licenses granted hereunder are assignable or trans-
ferable by the Customer without the prior written consent of the Company and any attempt to do so
shall be void. No failure or delay in exercising any right hereunder will operate as a waiver thereof,
nor will any partial exercise of any right or power hereunder preclude further exercise. If any provi-
sion of this Agreement shall be adjudged by any court of competent jurisdiction to be unenforceable
or invalid, that provision shall be limited or eliminated to the minimum extent necessary so that this
Agreement shall otherwise remain in full force and effect and enforceable. This Agreement shall be

166 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

construed pursuant to the laws of Finland without regard to the United Nations Convention on the
International Sale of Goods. This Agreement is the complete and exclusive statement of the mutual
understanding of the parties and supersedes and cancels all previous written and oral agreements
and communications relating to the subject matter of this Agreement. In any action to enforce this
Agreement, the Company will be entitled to recover its attorney’s fees and costs in connection with
such action.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

6.3. The Galera Manager 167

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• Docs (page 1)

• KB

• Training

• FAQ

6.3.4 Galera Manager Daemon (gmd)

The Galera Manager is driven by the gmd daemon program that can create clusters, add and remove nodes, and gather
monitoring data from the Galera Cluster. For information on installing gmd, see the documentation page, Installing
Galera Manager (page 155).

gmd Process

If Galera Manager was installed on a host, you can enter something like the following from the command-line to check
that it is running:

Listing 14: Checking if Galera Manager Daemon is Running (Example
1)

ps -e |grep gmd

5810 ? 00:00:18 gmd

The results showing the process identification number and the amount of time gmd has been running will be different
on your server. Although it is unlikely you will need to restart gmd, to do so you may enter the following from the
command-line:

Listing 15: Restarting the Galera Manager Daemon (Example 2)

systemctl restart gmd

You can replace restart with stop to shutdown the Galera Manager daemon—and use start to start it later. If
the server is rebooted, gmd is set to start automatically.

Configuration File

When you installed Galera Manager, the Installer created a configuration file for gmd based on the responses you
gave. You do not have to create it yourself. However, if you want to change some of the information you provided
when installing, you can edit the configuration file. It is located in the sub-directory, /etc/default/ and called,
gmd.

The gmd configuration file will look something like this:

Listing 16: Contents of Galera Manager Configuration File (Example 3)

ARGS="--rsa-private-key=/var/lib/gmd/jwt-rsa.key"
GMD_CONFIG_DIR=/var/lib/gmd
GMD_LOGS_DIR=/var/log/gmd
INFLUXDB_URL=https://gmd:8hCh2GeYv9@34.217.207.40:8091
PROMETHEUS_URL=https://34.217.207.40:8092

There are few settings here. You can change the values with a simple text editor. Just remember to restart gmd for the
changes to take effect. See above for how to restart the daemon.

168 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

gmd Logs

In the previous section, you may have noticed the location of the log files: /var/log/gmd. Should you have
difficulty starting gmd or encounter similar problems, you can check this directory for log files containing messages
that may indicate the cause. Below is an example of the contents of that log file directory:

Listing 17: List of Galera Manager Log Files (Example 3)

ls -1 /var/log/gmd

cluster-testeroo.log
default.log
host-hoster-jfebk-stdout.log
host-hoster-jfebk.log
host-hoster-lisvt-stdout.log
host-hoster-lisvt.log
host-hoster-mlksh-stdout.log
host-hoster-mlksh.log
node-noder-jfebk.log
node-noder-lisvt.log
node-noder-mlksh.log

There’s a log file for the gmd daemon (that is, default.log), one for the cluster, a pair for each host, and one for
each node.

You may be confused as to the difference between a host and a node in this context. A host has to do with the
computer system on which the Galera Cluster software is installed. This includes software configuration, network
traffic, as well as where particular software like Galera Manager and MySQL are running. Whereas, a node is a
database engine process running on the host and forming the Galera Cluster by connecting with other such processes
running elsewhere. Is the node available and handling database client traffic? Is it synchronized with the other nodes
in the cluster?

What’s important to an administrator, though, is knowing where to find log messages to troubleshoot problems that
may be encountered. Below are descriptions of what may be found in each log, with the most information recorded in
the host standard output log (for example, host-hoster-mlksh-stdout.log).

Default Log

The main log file for the gmd daemon, the default.log file, contains information related to starting and stopping
the daemon. Here’s an excerpt from such a log file:

Listing 18: Excerpt from Galera Manager’s Default Log (Example 4)

time="2020-05-18T08:05:19Z" level=info msg="Starting gmd"
time="2020-05-18T08:05:19Z" level=info msg="Listening on 127.0.0.1:8000"
time="2020-05-18T08:05:19Z" level=info msg="ConfigDir = /var/lib/gmd"
time="2020-05-18T08:05:19Z" level=info msg="LogsDir = /var/log/gmd"

As you can see, it records when it started the gmd daemon, on which IP address and port it is listening for connections
from users (such as admin), and the directories for configuration and log files.

Cluster Log

As mentioned above, there’s a log file for the cluster. Its name contains the name of the cluster appended to it (for
example, testeroo from the examples on other pages of this documentation section). This log file contains some
very basic information on the settings of the cluster. Below is an example of its contents:

6.3. The Galera Manager 169

Galera Cluster Documentation, Releases 3.x and 4.x

Listing 19: Excerpt from Galera Manager’s Cluster Log (Example 5)

time="2020-06-07T06:27:39Z" level=info msg="cluster record created" cluster-
→˓name=testeroo

It is not much, since it is from a new installation of Galera Manager, one used in examples elsewhere in this documen-
tation. It contains the date and time the cluster was created, as well as the name of the cluster. As a result of that name,
this log file is named, cluster-testeroo.log.

Host Logs

As mentioned earlier, there is a pair of log files for each host in the cluster. One is labeled host, followed by the
name of the host and the extension, .log This file contains primarily entries showing the data time or changes to the
host’s status.

Below is an excerpt from the host-hoster-mlksh.log file from the examples used here in documentation on
Galera Manager:

Listing 20: Excerpt from a Galera Manager Host Log (Example 6)

time="2020-06-07T06:28:58Z" level=info
msg="setting deployment status to pending" host-name=hoster-mlksh

time="2020-06-07T06:30:04Z" level=info
msg="setting deployment status to ok" host-name=hoster-mlksh

This is actually two lines of entries, but we broke the lines to fit more easily on the screen. Still, there’s not much
information here. Nevertheless, you might write a custom shell script to parse this file to check for the latest entry,
looking for when the deployment status is not ok, and send you a message saying as much—and then have cron run
that script frequently at regular intervals. Or you could just keep Galera Manager open in a window on your computer.

The other log file for each host is labeled host, followed by the name of the host, then stdout and the extention,
.log (for example, host-hoster-mlksh-stdout.log). This log file contains the messages generated by the
host server when activities happen, when various commands, utilities and other programs are run by Galera Manager.
If these commands and all were executed manually, some messages would normally be shown on the screen (that is,
the standard output). However, since they’re run in the background, there’s no one to see them. So Galera Manager
writes them to a log file for each host.

These host stdout log files are extensive. They contain information on updating Galera Manager software, network
traffic, and many other logistical system information related to Galera. As a result, they can become fairly large
files. But they can also be useful when trying to troubleshoot a problem with Galera Manager software—but not the
synchronizing and accessing of data within the cluster, on nodes.

Node Logs

In the log directory for gmd, there is a log file for each node. As mentioned earlier, these log files contain in-
formation related to the nodes of the cluster, their interactions with each other. Below is an excerpt from the
node-noder-mlksh.log file from examples elsewhere in this documentation:

Listing 21: Excerpt from a Galera Manager Node Log (Example 7)

time="2020-06-07T06:31:54Z" level=info msg="updating cluster IPs" ctx=update-cluster-
→˓ips node-name=noder-mlksh
time="2020-06-07T08:15:09Z" level=info msg="checking node status" node-name=noder-
→˓mlksh

(continues on next page)

170 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

time="2020-06-07T08:15:10Z" level=info msg="node status is healthy" node-name=noder-
→˓mlksh
time="2020-06-07T08:15:10Z" level=info msg="already started" node-name=noder-mlksh

Notice these entries are related to nodes in the cluster having started, being ready to accept MySQL client traffic, and
in sync—that is to say, the node’s health.

Should one of the nodes have problems that are not reflected in the metrics you are tracking in Galera Manager, you
could check the log for that node for an indication of what’s wrong with it. Afterwards, you might want to add the
appropriate metrics to Galera Manager to monitor the situation more closely and conveniently from within Galera
Manager. For more information on adding metrics to track in Galera Manager, see the Monitoring a Cluster with
Galera Manager (page 196) documentation page.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

6.3. The Galera Manager 171

Galera Cluster Documentation, Releases 3.x and 4.x

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3.5 Deploying a Cluster in Galera Manager

With Galera Manager installed, you are ready to create a Galera Cluster or start monitoring an existing cluster. This
page of the Codership documentation describes how to connect to Galera Manager, create a cluster and how to add
nodes to a cluster. If you haven’t already installed Galera Manager, go to the Installing Galera Manager (page 155)
documentation page to do that first.

Without Galera Manager, to create a Galera Cluster, you have to set up multiple servers or AWS Instances, and then
install MySQL or MariaDB and Galera software on each. You also have to configure each server or node. It is a fairly
detailed process. Instead, you can use the Galera Manager to make the process of creating a cluster and adding nodes
simple and quick.

Create a Cluster

To create a cluster in Galera Manager, click on Create New Cluster. You’ll then see a large dialog box like the one
below in Figure 1. In this box you will give the cluster a name, as well as make some default choices for creating
nodes and hosts

Looking at the screenshot here, in the first section labeled Cluster Configuration, you can see that you have to provide a
name for your cluster. In this example, the name testeroo was given, but you should enter something more meaningful
to your organization or system—especially if you will be creating more than one cluster.

Default Node Configuration

In the next section of the box shown in Figure 1, the section labeled Node Configuration, you are asked to make
default choices that will be used when you later add nodes to the cluster. To be clear as to what’s discussed, below is
the screenshot from Figure 1, but cropped around the default node configuration section:

The first field in this section asks you to specify which version of MySQL or MariaDB you want to use. It is not
a default but a final choice, because the nodes should all use the same version of the same database system. You
shouldn’t have one node in a cluster using MySQL and another MariaDB, or even have them all using MySQL, but
different versions. If you create another cluster, however, it may use a different database system and version.

Database Engine Configuration

Next, to the right in Figure 2, you may provide default custom configuration for your nodes, for example
innodb_buffer_pool_size or wsrep_provider_options. This should be given in the same format you’d
use in my.cnf. You would click on the icon of a cogwheel, where is says Custom DB Engine Configuration, to add

172 Chapter 6. Cluster Monitoring

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 7: Create Cluster Dialog Box (Figure 1)

Fig. 8: Host Defaults Section of Create Cluster Dialog Box (Figure 2)

6.3. The Galera Manager 173

Galera Cluster Documentation, Releases 3.x and 4.x

those options or variable names with the values you want. Galera Manager manages configuration pertaining to its
functionality (for example wsrep_cluster_address), so those variables managed by Galera Manager will be
overridden.

In Example 1 below is the contents of /etc/mysql/mysql.conf.d/mysqld.cnf on one of the nodes which
is running Ubuntu—it is the same for each node:

Listing 22: MySQL Daemon Configuration File (Example 1)

[mysqld]
pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
datadir = /var/lib/mysql
log-error = /var/log/mysql/error.log

These are minimal settings for MySQL. For Galera Cluster, there is an additional configuration file. These are the
settings in /etc/mysql/wsrep/conf.d/99.galera.cnf, for the same node running Ubuntu:

Listing 23: Galera Configuration File (Example 2)

[mysqld]
bind-address = 0.0.0.0
wsrep_on = ON
make it dynamic according to the distribution
wsrep_provider = /usr/lib/galera/libgalera_smm.so
wsrep_cluster_address = 'gcomm://52.25.88.43,54.213.111.232,35.163.3.151'
wsrep_cluster_name = 'testeroo'
wsrep_node_name = 'noder-jfebk'
wsrep_sst_method = rsync
binlog_format = row
default_storage_engine = InnoDB
innodb_autoinc_lock_mode = 2
log_error = /var/log/mysql/error.log
general_log_file = /var/log//mysql/general.log
general_log = 1
slow_query_log_file = /var/log/mysql/mysql-slow.log
slow_query_log = 1

Although these excerpts were taken from Ubuntu nodes, the same settings will be found in nodes using other
Linux distributions generated by Galera Manager. Notice that two lines were set for this particular cluster:
wsrep_cluster_address contains all of the IP addresses of the nodes; and wsrep_cluster_name con-
tains the name of the cluster. There’s one line that is set for this particular node: wsrep_node_name contains the
node’s name. These adjustments are made by Galera Manager when adding nodes.

Again, if you want to add some other settings, perhaps setting values for InnoDB buffers, you add them to the box for
Custom DB Engine Configuration. Below in Figure 3 is a screenshot of that box and how you might enter values:

Notice that you have to include the [mysqld] heading. When you are finished, click on Set to save. At this time, you
won’t be able to make changes to these settings once you finish creating the cluster. So be sure you have everything
you want before clicking Create. Otherwise, you will have to log into each node to make changes manually to the
configuration files and restart the nodes. However, when adding a new node to the cluster you will be able to provide
an alternative configuration. In a future release, you will be able to edit these default settings from within Galera
Manager.

174 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 9: Node Default Database Custom Configuration (Figure 3)

Default Host Configuration

The next section of the Create Cluster dialog box relates to how you want to create hosts, the servers on which nodes
will be running. This has to do primarily with the operating system to install on the servers and how you will access
those servers using ssh.

To make it easier to discuss, below is the screenshot from Figure 1, but this time cropped around the default host
configuration section:

Fig. 10: Host Defaults Section of Create Cluster Dialog Box (Figure 4)

The first field allows you to chose the host type: locallxd, ec2 or unmanaged. Choosing locallxd will instruct Galera
Manager to generate Linux Containers, using the lxd daemon, to create hosts when you add nodes later. They’ll all
run on the same server where you have Galera Manager. This option is primarily for testing purposes and shouldn’t
generally be used.

Choosing ec2 will use Amazon’s EC2 service to create separate AWS Instances for each host needed for each node
you add to the cluster. When you choose this, there will be fields allowing you to choose which AWS region to use for
hosts, and which type of Instance—these relate to the size and speed of the server.

Choosing unmanaged will mean that you already have a manually managed running cluster. In that case Galera
Manager will attempt only to install and configure monitoring software on the nodes and will perform only cluster

6.3. The Galera Manager 175

Galera Cluster Documentation, Releases 3.x and 4.x

monitoring but not management.

In a future release, Galera Manager will add more host types an support more cloud providers.

AWS Access Keys

In case you chose ec2 host type, you will also be asked to provide your Access Key information so that Galera Manager
may interface with AWS on your behalf. This information is secure and not shared with Codership: it is confined to
your installation of Galera Manager. Even if you already have a copy of the ID and the password, you may want
create another key for use only by Galera Manager. You would do this on AWS’s site. To get to this page, log into the
EC2 console. Then click where the name for your account is show. A pull-down menu will appear, as you see in the
screenshot below:

Fig. 11: AWS Account Menu (Figure 5)

Click where it says, My Security Credentials. This will take you to the Identity and Access Management (IAM) page.
Look in the main panel for the choice labeled, Access Keys and click on it to expand that sub-section. Your screen will
look something like the screenshot below:

Fig. 12: AWS Security Credentials (Figure 6)

176 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Then just click on the blue button labeled, Create New Access Key. It will immediately create a new AWS Access Key
ID and AWS Access Key. You’ll see a box appear like the one in the screenshot below:

Fig. 13: Created AWS Access Key (Figure 7)

You can copy the text containing the AWS Access Key ID and the AWS Access Key (see Figure 7), and paste each of
them into the appropriate fields in Galera Manager where you are in the process of creating a cluster, in the Default
Host Configuration section. You may also want to click on the gray button that reads, Download Key File to download
the AWS Access Key. This will download a CSV file containing the same information. Make a copy or download
the key immediately and save it to a secure location since you won’t be able to access this key on AWS or in Galera
Manager once you close this box.

SSH Keys

The last two fields of the Default Host Configuration section are related to ssh enryption keys. To be clear, below is
the screenshot from Figure 1 again, but cropped here around the part on SSH keys:

Fig. 14: SSH Keys for Default Host Configuration (Figure 8)

These encryption keys are used to access the hosts via SSH.

You should provide the private key in case you want Galera Manager to use a specific key to access the hosts, for
example if you have set up corresponding public keys on the hosts. You need to supply the key if you have chosen
unmanaged host type, otherwise it is not required: Galera Manager will generate its own key pair.

For you as administrator to access the host with ssh, you will need to provide one of your own public keys. Click on
the icon of a key on the right, where it says, Authorized Keys. A box will appear like the one below in Figure 9 for you
to paste in your public key from your own private key:

After pasting in the public key, click on the plus-sign icon to store it. The field will become empty again so that you
may paste in another public key. You may want to paste in a public key for each person for whom you want to provide
command-line superuser access to the hosts.

6.3. The Galera Manager 177

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 15: Add Authorized Public SSH Keys (Figure 9)

Fig. 16: Authorized Public SSH Keys (Figure 10)

178 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Finishing Deployment

When you finish with all of your settings for the new cluster, click on the text in blue where it reads, Create. This will
open a small box that should say it was successful, like the one below:

Fig. 17: Cluster Finished Creating (Figure 11)

There’s not much to this because you haven’t yet added nodes to the cluster. To learn about how to add nodes to
a cluster, read the Adding Nodes with Galera Manager (page 180) documentation page. Check the Adding Users
to Galera Manager (page 187) page on adding users, the Loading Initial Data (page 190) on adding data, and the
Monitoring a Cluster with Galera Manager (page 196) page on configuring the metrics to track.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

6.3. The Galera Manager 179

Galera Cluster Documentation, Releases 3.x and 4.x

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3.6 Adding Nodes with Galera Manager

After you’ve created a cluster, set the defaults for nodes within Galera Manager, you will need to add nodes to that
cluster. .. When you add nodes to a cluster, Galera Manager will add hosts on AWS (Amazon Web Services) and
install all of the software needed, including either MySQL or MariaDB. It will then configure mysqld to be a node
in the cluster.

If you haven’t yet created a cluster, read the Deploying a Cluster in Galera Manager (page 172) page—installing
Galera Manager is covered in the Installing Galera Manager (page 155) page.

Node & Host Deployment

To add nodes to a cluster, after logging into Galera Manager from a web browser, click on the cluster in the left margin.
In the main panel, click then on the vertical ellipsis in the top right margin. When you do, a small box (see Figure 1
below) will offer you two choices: to add a node or to delete the cluster. Click on Add Node.

Fig. 18: Close-Up of Menu to Change a Cluster (Figure 1)

After you click Add Node, a large box like the one shown in the screenshot below in Figure 2 will appear. Here you
will provide your preferences for the node or nodes, and the hosts you want to add.

The first field at the top left of the Node Deployment Wizard is to enter the number of nodes you want to add, depending
on the host type of the node. If the host is managed by Galera Manager (for example EC2 host type), then Galera

180 Chapter 6. Cluster Monitoring

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 19: Node Deployment for a Cluster (Figure 2)

6.3. The Galera Manager 181

Galera Cluster Documentation, Releases 3.x and 4.x

Manager can automatically provision and set up several nodes at once. If hosts for the nodes are provided by the user
(unmanaged host type), then each node will have to be added individually.

In the example here, we are creating a cluster in AWS EC2, so 3 has been entered. By default, the nodes will be started
automatically after the hosts have been provisioned and then nodes set up.

Node Deployment Choices

Next, you will enter specific information on this node or set of nodes. To make discussing easier, below is the
screenshot from Figure 2, but cropped around the default node configuration section:

Fig. 20: Node Configuration (Figure 3)

At a minimum, you would enter the prefix for naming nodes. If you are creating only one node, what you enter here
will be used. If you are creating multiple nodes, this text will be used as a prefix to each node’s name. The suffix of
the node name will be randomly generated. If it is important to you to name each node, you will need to add them one
at a time to the cluster.

The database system and version is already set from when you created the cluster. You have to use the same database
system for each node. However, although the custom database settings you might have added at that time will be
passed to the nodes—if you are creating nodes one at a time—you may give one node extra settings depending on
their hardware and operational purpose. You probably wouldn’t do this with the initial set of nodes, but later when
you are adding temporarily another node because of a surge in traffic, you might want the extra node to handle more
traffic. Therefore, you may want to set its buffers and other settings to higher values. You can add those settings then
for the one node.

Host Deployment Choices

The next part of the Node Deployment Wizard, shown in the cropped screenshot below, relates to configuring the hosts.
By default host setting are inherited from the cluster values, but you can change them for particular host here. If you
are adding a host that is not created by Galera Manager, here you will need to provide private SSH key for Galera
Manager root access to the host. Host defaults are explained in the Default Host Configuration (page 174) section of
the Deploying a Cluster in Galera Manager (page 172) documentation page.

Being able to make different choices for the host when adding nodes is particularly useful when adding nodes to an
existing and running cluster. For example, if you are adding temporarily a node because of an increase in traffic, you
might want to use a larger server. To do this, you would select a different EC2 Instance Type, one with more memory
and processing power. If you want to migrate to a new release of Linux, you can add new nodes with that choices.
After they’ve synchronized, you could then delete the old nodes.

Finishing Deployment

After you finish entering the number of nodes in the Node Deployment Wizard, and the node and host names, as well
as any changes you want to make to the default settings, you would then click on Deploy in the right-hand corner.
A small box, like the one below, will appear in which you can observe the progress of the hosts and nodes being

182 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 21: Host Configuration (Figure 4)

deployed. Note, here we illustrate an example of adding nodes in AWS EC2, which involves automatic provisioning
of EC2 instances for hosts, installing cluster and monitoring software, and finally starting up the nodes)

Fig. 22: Progress of Adding Nodes (Figure 5)

The deployment process may take some time. If it fails, you will see in the small red text at which point it failed.
You can also check the Logs and Jobs tabs for the cluster and node for more information. When the node deployment
succeeds, all of the circled-dot and right-arrow play buttons on the right (see Figure 5) will change to check marks and
the Finish link will become active. Click on that link to close the box when it is done.

Finished Results

When the Node Deployment Wizard has finished running and you’ve closed the related box, you will see the nodes that
were added listed in the left margin, under the name of the cluster. The results should look similar to the screenshot
below in Figure 6 below:

Notice that although a node name of noder was entered, some extra text was added to make each node name unique
(for example, noder-jfebk). As mentioned earlier, if you add one node at a time, you can name each and no suffix
will be appended.

If you chose to have the nodes started automatically, they should all have a status of Synced. If one wasn’t started
automatically, click on the node in the left margin, and then click on the vertical ellipsis at the top right of the main

6.3. The Galera Manager 183

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 23: Left Margin with Results of Adding Three Nodes (Figure 6)

panel. From the choices you are offered there, click Start to start the node.

Now that we created our cluster in AWS EC2, Galera Manager has provisioned a EC2 instance for each node’s host.
If you look in your EC2 console showing your Instances, you will see something like the screenshot below:

Fig. 24: AWS Instances: Galera Manager and Three Hosts (Figure 7)

In this example, there’s one Instance, on which Galera Manager is installed. There’s an Instance for each node of the
three in the cluster (for example, hoster-jfebk, etc.). .. You see the host names because that’s the physical or
virtual server on which the node and its software is running.

When you click on a node in the left margin of Galera Manager, you will see charts for monitoring the node’s activities.
To start, it will be fairly empty like the screenshot below:

At this point, the charts are rather featureless. However, as you start to add data, which is covered in Loading Initial
Data (page 190) page of the documentation, you will start to see some activity. You can learn more about how to use
these charts, as well as how to add other charts to track other metrics than these initial few, by reading the Monitoring
a Cluster with Galera Manager (page 196) page. You may also want to add other users to Galera Manager who can
monitor and add clusters and nodes. This is covered on the Adding Users to Galera Manager (page 187) page.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

184 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 25: New Node in Galera Manager (Figure 8)

6.3. The Galera Manager 185

Galera Cluster Documentation, Releases 3.x and 4.x

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

186 Chapter 6. Cluster Monitoring

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

6.3.7 Adding Users to Galera Manager

Galera Manager offers several features for the maintenance of Galera Clusters, saving you plenty of time in deploying
nodes and similar tasks. However, you may want the assistance of other administrators, especially when you are not
around to monitor your clusters. In anticipation of such situations and needs, you can add other users to the Galera
Manager. Note, these are not users for the MySQL or MariaDB databases.

This page of the Codership documentation describes how to add users to Galera Manager. If you haven’t already
installed Galera Manager, go to the The Galera Manager (page 152) documentation page.

Adding Users

When you installed Galera Manager with the Installer, you were asked to specify a user name and password for the
administrator. You were only allowed one user during installation. Now that Galera Manager is installed, you may
add more users. Click on the menu icon, the three horizontal strips at the top left. It will reveal what you see in the
screenshot of Figure 1 below:

Fig. 26: Galera Manager Menu (Figure 1)

As you can see, there are three choices: Management, which brings you back to the primary screen for managing and
monitoring Galera Clusters; Users, which is where you will add and remove users for Galera Manager; and Logout,
which is to log out of Galera Manager. If you click on Users, you will see a box similar to the screenshot in Figure 2
below:

In the example in the screenshot above, a user name of bob was entered, along with a password. The other choice is
to set the user’s privileges: None, Observer, Manager, and Administrator.

The setting of None will create a user who may log in, but has no access, can see nothing. In the future it can be used
to temporary block the user, but currently the users can only be created and deleted. A user designated as an Observer
will be allowed to log in and monitor clusters and nodes, but not make any changes. A Manager will have all of the
privileges of an Observer, but will also be allowed to add and delete clusters and nodes, as well as add and remove
metrics to monitor. The Administrator can do everything, including adding and removing users.

Changing Users

After you’ve added some users, you will see them on the user page. To return to this page, click on the menu icon and
then Users. You’ll see a screen like the one in Figure 3 below:

6.3. The Galera Manager 187

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 27: Dialog Box for Adding Users (Figure 2)

Fig. 28: Galera Manager Users (Figure 3)

188 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

You can, of course, add more users. Should you decide to delete a Galera Manager user or to change a user’s role,
click on that user in the list of users. You’ll see in the main panel the same fields you were presented when you created
the user, similar to the screenshot below in Figure 4:

Fig. 29: Galera Manager User Information (Figure 4)

Click the vertical ellipsis at the top right of the panel for the user. Your only choice there will be to delete the user,
so click it. To put the user back, click on the text below the list of users where it says, Create New User to add them
again with new choices or values.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

6.3. The Galera Manager 189

Galera Cluster Documentation, Releases 3.x and 4.x

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

Related Articles

• Galera Cluster Backups

• Migrating to Galera Cluster

• Upgrading GM (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3.8 Loading Initial Data

After you create a Galera Cluster and add nodes with Galera Manager, you will probably want to load data from a
previous database, to migrate data from another server or cluster. This is not a feature of Galera Manager since its
main focus is the logistics and monitoring of clusters and nodes, not the data contained in the databases.

To load the initial data in a new Galera Cluster created within Galera Manager, you will have to use standard methods,
of which there are a few. This page of the Codership documentation explains how to log into one of the hosts, and how
to use common, basic methods to load data into a node.

If you are unfamiliar with how to make a back-up on an existing Galera Cluster, you could read the Backup Cluster
Data (page 112) documentation page first. There are also links in the margin to tutorials on making back-ups and
loading back-ups to a node of a new cluster—regardless of whether Galera Manager was used to create the cluster.

Methods to Load Initial Data

There are two common methods of loading data into MySQL or MariaDB: restoring from a logical or a physical
back-up.

Loading Logically

Logical back-ups are generated with a utility like mysqldump and produce text files (that is, dump files) or streams
containing SQL statements which may be used to rebuild databases. See the tutorial, Galera Cluster Backups for more
details on how to use mysqldump to make a back-up. mysqldump creates a “dump” file or stream from a source
MySQL server which then can be loaded to a new MySQL server using MySQL client utility (mysql).

190 Chapter 6. Cluster Monitoring

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

If you will be restoring data by way of a MySQL client, you will need the node’s IP address and the root password for
the database. To get this information select a node in Galera Manager and then click on the Configuration tab for the
node. You can see an example of this in the screenshot in Figure 1 below:

Fig. 30: Node Configuration (Figure 1)

In the main panel shown here, near the top left of the Configuration tab, in the DB Address field, is the external
IP address of the node, which is 52.41.73.124 in this example. You’ll also need the MySQL or MariaDB root
password. Incidentally, since it is a new installation of MySQL or MariaDB, there’s only the root user. To get the DB
Root Password—as it is labeled here—click on the icon of an eye to reveal it, or click the icon of two sheets of paper
to copy the password to your clipboard.

With the node’s IP address and the password for root in the database, you can use a MySQL client to load data from a
dump file. The example below shows how to restore a dump file made with mysqldump:

6.3. The Galera Manager 191

Galera Cluster Documentation, Releases 3.x and 4.x

Listing 24: Load Data from a mysqldump File (Example 1)

mysql -p -u root -h 52.41.73.124 < company-20200607.sql

This line above would be executed on another server where the dump file (that is, company-20200607.sql) is
located. The host address here is for the node into which it will be loading the data. When it asks for the password,
you would give it the one you copied from the node in Galera Manager.

The dump file contains SQL statements that will execute CREATE DATABASE and CREATE TABLE statements, as
well as plenty of INSERT statements to recreate the databases, tables, and rows of data on the new node—in the new
Galera Cluster. It will run for quite a while, but when it is finished, you might execute an SQL statement like the
following from the command-line:

Listing 25: Checking Loaded Data (Example 2)

mysql -p -u root -h 52.41.73.124 -e "SHOW TABLES FROM company"

+----------------------+
| Tables_in_company |
+----------------------+
| clients |
| clients_addresses |
| clients_email |
| clients_telephones |
| employees |
| employees_email |
| employees_salaries |
| employees_telephones |
| org_departments |
| org_divisions |
| org_offices |
| org_warehouses |
| ref_job_titles |
| ref_name_titles |
| ref_states |
+----------------------+

The results table in Example 2 here shows that the company database was created and so were the tables for it. You
could check further by executing some SELECT statements to ensure the data was inserted.

You might also go back to Galera Manager to see how the activity looks for your nodes. Below is a screenshot of
Galera Manager that was taken shortly after loading the dump file above:

Notice the first chart at the top left for the cluster has no activity and then there’s a spike of activity. There are three
line graphs showing spikes because there are three nodes: one is the data being loaded from the mysql client and the
other two nodes are replicating data that the first node is receiving.

Loading Physcially

The other common method of making back-ups is to use physical back-ups. This is fairly simple: it is mostly just a
copy of MySQL’s data directory. Typically, administrators use rsync, xtrabackup or mariabackup to make
a back-up copy of the data directory and othere relavent files. Then they use tar and gzip to make a compressed
archive file. See the tutorial, Galera Cluster Backups for more details on this process.

Copying and restoring the data from physical backups is normally much faster than using logical backup, the bigger
the volume the bigger the difference. However restoring data from physical backup to Galera Cluster is quite tricky.
The problem is that it can’t be done on a running node, and as a consequence it goes without cluster being aware of it.

192 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 31: Monitoring Data Loading on Nodes (Figure 2)

6.3. The Galera Manager 193

Galera Cluster Documentation, Releases 3.x and 4.x

The easiest way to initialize Galera cluster from a physical backup is start with a single node cluster and after restoring
the node from physical backup, add other nodes at will.

First, create a cluster and add a single node to it. Make sure to supply your public SSH key in the Authorized Keys
section. You will need your private SSH key counterpart when accessing the host. When the node reaches SYNCED
state, stop the node from Galera Manager: click on the node and then the vertical ellipsis at the top right. This will
open a dialog box like the one below:

Fig. 32: Stopping a Node in Galera Manager (Figure 3)

When you click on Stop, the node process (mysqld) will be stopped, but the host will remain online.

To restore from a physical back-up, you will need to copy the back-up data to the host frist. This is where you will
need the node’s IP address from the node configuration tab mentioned the Loading Logically (page 190) section of this
page, and a private SSH key that corresponds to the public key you supplied in the node creation box.

To copy the back-up file to the node, you can use scp to make a secure copy from the old server where the back-up is
located, to the new node. First, you may want to log into the host. You could do that by entering something like the
following from the command-line of a local computer:

Listing 26: Logging into a Node to Prepare to Load Data (Example 3)

ssh -i ~/.ssh/galera-manager root@52.41.73.124

The name of your private key and your node’s IP address will be different. Notice it requires you use the user name,
root. That’s the only user since this is a new host.

Listing 27: Copying Back-Up Data from Remote Server (Example 4)

scp -i ~/.ssh/galera-manager /backups/backup-20200607.tgz root@52.41.73.124:/tmp/

This line uses scp to copy the back-up file from another Ubuntu server to the new node, to the /tmp directory. Now
you can restore MySQL data directory from that backup. Details depend on how you created the backup. Please refer
to the documentation on how to use that particular backup method to recover the data directory. In the most trivial
case of backup being simply a tarball of the data directory:

194 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Listing 28: Unzipping and Extracting Back-Up Data (Example 5)

tar -xvzf /tmp/backup-20200607.tgz -C /var/lib/mysql
chown -R mysql /var/lib/mysql

When you are finished, go back to Galera Manager and start the node. As soon as mysqld starts and shows SYNCED
state, you can add more nodes, they will automatically copy data from the first one. You could execute a few SQL
statements on one of the other nodes to see if they have the data, as shown in Example 2.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

Related Articles

• Galera Cluster Backups

• Migrating to Galera Cluster

• Upgrading GM (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

6.3. The Galera Manager 195

Galera Cluster Documentation, Releases 3.x and 4.x

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3.9 Monitoring a Cluster with Galera Manager

There are perhaps two aspects of Galera Manager that are its best features and make it worthwhile for database
administrators to use: First is the ability to add nodes easily with a graphical interface, and without having to configure
each node manually. Second is the ability to monitor a cluster with a set of charts that can track many database and
cluster metrics.

If you happened upon this page of the documentation first, without having installed Galera Manager, please read the
Installing Galera Manager (page 155) page and install it. For those who have installed Galera Manager, but have not
yet created a cluster with nodes using Galera Manager, read the Adding Nodes with Galera Manager (page 180) page.

Default Charts & Metrics

After first having created a cluster and added nodes, you will see a dashboard containing charts for tracking some
metrics. Below in Figure 1 is a screenshot of how a cluster with three nodes would look at the start. However, these
charts and monitored metrics are just a few that are loaded by default. You can add and remove any charts, monitor
any database or cluster metrics you want.

As a starting point,six charts are configured for new installations. You may remove any or all of these charts. Before
you do, you might want to consider what these initial ones track:

• load_node_1 records the CPU load average. It is a standard metric commonly displayed by most load monitors
in Linux. Essentially, it tells you how loaded the system is with tasks, tasks competing for CPU usage.

• node_memory_MemAvailble_bytes stores how much memory is available for each node.

• mysql_global_status_wsrep_replicated indicates the number of write-sets replicated from that node.

• mysql_global_status_wsrep_received is the number of write-sets received. Together with the number repli-
cated, this would equal the total transaction rate on the node.

• mysql_global_status_wsrep_flow_control_sent provides the number of flow control events emitted by the
node.

• mysql_global_status_wsrep_flow_control_paused records how much time replication on the node was paused
in nano-seconds per second. A value of 1,000,000,000 would mean it was completely paused. This metric and
the previous one are very important to troubleshoot replication performance concerns.

196 Chapter 6. Cluster Monitoring

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 33: Monitoring Data Loading (Figure 1)

6.3. The Galera Manager 197

Galera Cluster Documentation, Releases 3.x and 4.x

Metric Names & Associations

The metrics come from the InfuxDB database and have a pattern to the names of metrics. Ones containing the word,
node (for example, load_node_1), track the host metrics; in this context, it is a misnomer.

As for metrics with mysql_global_status_ as the prefix, the stem is the name of the MySQL or MariaDB global status
variable’s name. For example, mysql_global_status_wsrep_replicated is from the MySQL global status variable,
wsrep_replicated.

If for some reason you want to access MySQL database directly you would go to the Configuration tab for one of the
nodes to get the IP address and password for the database system. Then you would enter something like the following
from the command-line of a computer on which the mysql client is installed:

Listing 29: Checking a MySQL Global Status Variable (Example 1)

mysql -p -u root -h 34.216.245.12 /
-e "SHOW GLOBAL STATUS LIKE 'wsrep_replicated'"

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| wsrep_replicated | 7 |
+------------------+-------+

These results should agree with that of the chart in Galera Manager tracking this status variable. There’s no need,
though, for you to do this, to enter SHOW GLOBAL STATUS for every variable you want to monitor: you now have
Galera Manager to do that for you. If there’s a status variables you regularly check, you need only to add a chart in
Galera Manager to monitor it.

Adding Metrics to Monitor

There are over one-thousand metrics that may be tracked. Some of them measure host operation: CPU usage, free
memory, etc. Others come from the node’s database engine, the mysqld process: the number of transactions com-
mitted, the amount of dirty pages in the buffer pool and so on.

To add a chart to the monitor in a cluster, click on the cluster in the left margin. Then in the Monitor tab, click on
the vertical ellipsis at its top right—not the vertical ellipsis above it, not the one at the top right of the panel. See the
screenshot in Figure 2 below:

Click on Add Chart and a box will appear like the one in Figure 3 below. There you will find all of the metrics you
may track. Most are global status variables from MySQL, others are different host performance metrics—there are
several at the bottom of the list. The data come from the mysqld_exporter daemon running on each host and gets
aggregated locally on Galera Manager host for quick access.

Choosing a Metric

In the screenshot below, you can see the dialog box for choosing metrics to chart. Notice that metrics with the icon of a
stack of disks are from the database engine (MySQL or MariaDB). Metrics tracking host performance are represented
by the icon of a stack of servers.

You can either scroll through the long list of metrics, or you can enter a variable name in the search line to find it. If
you do not remember the precise name of the variable, you may enter part of it (for example, buffer). This will
present entries that match what was entered. You can then click on the one you want.

198 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 34: Adding a Chart (Figure 2)

Cumulative or Differential

Some metrics show the total number of events since the process started (for example, the number of flow control events
sent). As a result, its value keeps increasing. This sort of metric is called, Cumulative. If you choose such a metric, it
will be shown on a chart in values per time interval (that is, per second) over the sampling interval. Other metrics are
said to be Differential in that they are already in units per second.

Galera Manager is unaware of which metric is cumulative and which is differential. Therefore, you have to mark a
chart as such by clicking the appropriate button. It is located in the box for adding a chart as shown in Figure 3 above,
but hidden by the list of metrics in that screenshot. Below is the same dialog box, without the list of metrics, and
cropped:

After you’ve chosen a metric and indicated whether it is cumulative or differential, click Add at the bottom right corner.
You will be taken back to the monitor page and you will see a chart for the metric you added. You can reposition a
chart by clicking it and holding down the mouse button, then dragging it where you want.

Changing a Monitor’s Perspective

By default, the last fifteen minutes of the metric is shown in each chart, with the data refreshed every five seconds.
This is meant to show activities that have just happened and happened recently. However, to determine a trend or a
pattern, you may want to change the range of time and the refresh rate. You’ll notice in the upper right corner of the
main panel, above the charts, some selectors (see Figure 5 below). These may be used to change the perspective of a
chart.

Clicking on the first icon of a calendar with a clock will allow you to change the amount of time displayed in the
charts. You may choose a block of time in minutes (for example, thirty minutes), or a block in hours (for example,
three hours), or for a period of days (for example, seven days). You can see the list of choices in the cropped screenshot
in Figure 6 below:

You may also change the refresh rate to every second, or a less frequent amount of time (for example, every minute).
You can see a list of choices available in the screenshot shown in Figure 7 below:

Finally, you can choose the relative size of the charts displayed: small, medium, or large. This will affect the arrange-
ment of charts across and down. You might like to keep a separate computer running Galera Manager, continuously.

6.3. The Galera Manager 199

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 35: Adding a Chart - Looking for a Metric (Figure 3)

Fig. 36: Adding a Chart - Cumulative or Differential (Figure 4)

200 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Fig. 37: Changing Perspectives (Figure 5)

Fig. 38: Changing Time Period Displayed (Figure 6)

Fig. 39: Changing Refresh Rate of Data (Figure 7)

6.3. The Galera Manager 201

Galera Cluster Documentation, Releases 3.x and 4.x

In which case, switching the web browser to full-screen with the charts set to large format would allow you to fill the
screen and view the charts from a distance so as to get your attention quickly if a problem arises.

Preserving Chart Configuration

You may decide to make use of the default charts provided with Galera Manager, but if you decide to make changes,
you may want to download a copy of the dashboard configuration. You can spend plenty of a time deciding on which
metrics to monitor, and how to configure the charts. It would be frustrating to lose your charts configuration.

To preserve the chart configuration, click on the cluster in the left margin. Then in the Monitor tab, click on the vertical
ellipsis at the top right within that panel. You’ll see this pull-down menu, the same one you used to add charts:

Fig. 40: Downloading Dashboard Configuration (Figure 8)

Click on Download Dashboard Configuration and Galera Manager will generate a dashboard configuration file and
download it, saving it wherever you have set your web browser to download files. The file will be a json file and named,
cluster-*name*.json, where name is the name of your cluster (for example, cluster-testeroo.json).
Below is an excerpt from an example file:

Listing 30: Excerpt from an Exported Galera Manager Configuration
(Example 2)

{"name":"cluster-testeroo","config":
{"charts":
[{"id":"301186ce-7b7f-41bb-a457-60696aeabba8",

"name":"mysql_global_status_wsrep_received",
"metric":"mysql_global_status_wsrep_received",
"position":3,
"resolution":"5s",
"aggregation":"differential"},

...

...],
"tileSize":"md","refreshInterval":5000,"period":"15m"}}

This file excerpt has been reformatted with hard-returns and spaces to make it easier to view and follow—plus, most
of it has been removed and replaced with ellipsis for brevity. But you can get a sense of how the information is
stored—especially if you are familiar with json file structures.

This is a nice feature, being able to download the configuration file. However, at this point, the ability to upload a json
configuration file is not yet available: Galera Manager is still in its early days. In a future release, though, you should
be able to do this from Galera Manager.

202 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

Resolving Problems & Making Improvements

Galera Manager is an excellent tool for detecting issues early or potential ones with a Galera Cluster—hopefully,
before they can become a problem. It can also assist in determining when and how performance can be improved
before there is a slowing of database traffic or a loss of service.

Should you have problems with Galera Manager, you can check its log files. See the gmd Logs (page 168) section of
the Galera Manager Daemon (gmd) (page 168) documentation page for information on those logs.

When you encounter a problem with a Galera Cluster, besides reading Codership’s Documentation (page 1), you can
look through Codership’s Knowledge Base. When you can’t find a solution on your own, or at least not quickly
enough, you can contact Codership Support & Consulting.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

6.3. The Galera Manager 203

https://galeracluster.com/support/

Galera Cluster Documentation, Releases 3.x and 4.x

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.3.10 Upgrading Galera Manager (gmd)

Galera Manager Version

As new releases of Galera Manager software is released by Codership, you may update your installation using yum
or apt-get, depending on your distribution of Linux. When you installed Galera Manager, a repository file will
have been added to the repository directory: galera.repo in /etc/yum.repos.d on servers using yum; and
galera-manager.list in /etc/apt/sources.list.d on servers using apt-get. These repository files
will contain the address of the Codership repository, along with some related information.

To see which version and release of Galera Manager you are using, click on the menu icon, the three horizontal strips
at the top left. It will reveal what you see in the screenshot of Figure 1 below:

Fig. 41: Galera Manager Menu with Version and Release Number (Figure 1)

In this example screenshot, you can see in the subdued text at the bottom that this installation of Galera Manager is
the beta version 1.0. The gmd is version 1.0.0, and the graphical user interface is version 0.1.0. You do not need to

204 Chapter 6. Cluster Monitoring

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

keep track of those numbers, but when you read about a new Galera Manager feature offered in these documentation
pages, but that you do not have in your installation, you can check your versions to see if maybe you need to upgrade
Galera Manager.

Updating Galera Manager

You wouldn’t run the Galera Manager Installer again to upgrade—reinstalling is not permitted by the Installer. In-
stead, you would use whatever package management utility (that is, apt-get or yum) is used in Galera Manager
host operating system.

When running updates of your server, Galera Manager software will be included. However, if you want to upgrade
specifically the Galera Manager software, you can do so like this on a server using the yum package management
utility:

Listing 31: Method to Upgrade Galera Manager with yum (Example 1)

yum upgrade galera-manager

This will upgrade the Galera Manager software, but you might be asked to upgrade also any related libraries it uses.
Unless there would be a problem with those upgrades for other software you are using on your server, cooperate with
the requests to upgrade the other packages.

Here’s how you would upgrade Galera Manager on a server using apt-get:

Listing 32: Method to Upgrade Galera Manager with apt-get (Exam-
ple 2)

apt-get update
apt-get --only-upgrade install galera-manager

You would do this only on the server running Galera Manager, not on the hosts used for the Galera Cluster nodes.

Once the upgrades are finished, gmd will be restarted automatically. You might need to refresh your web browser,
though, if you are logged into Galera Manager at the time. All of your settings, as well as your cluster and nodes
should remain—including the databases and their data. Your Galera Clusters operation is not affected by gmd upgrade
or failure.

Galera Manager Documents

• Getting Started (page 152)

• Installing (page 155)

• AWS Ports (page 162)

• gmd Daemon (page 168)

• Deploying Clusters (page 172)

• Adding Nodes (page 180)

• Adding Users (page 187)

• Loading Data (page 190)

• Monitoring a Cluster (page 196)

• Upgrading (page 204)

The Library

• Documentation (page 1)

6.3. The Galera Manager 205

Galera Cluster Documentation, Releases 3.x and 4.x

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Notification Script (page 208)

• wsrep_node_incoming_address (page 254)

• wsrep_node_name (page 255)

• wsrep_notify_cmd (page 255)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.4 Notification Command

You can use the database client (for example, mysql client) to check the status of a cluster, individual nodes, and the
health of replication. However, you may find it counterproductive to log in on each node to run such checks.

As an alternative and better method, Galera Cluster provides a method to call a notification script. Such a script may
be customized to automate the monitoring process of a cluster.

Note: For an example of such a custom script and related instructions, see Notification Script Example (page 208).

Notification Parameters

When a node registers a change in itself or the cluster, it will trigger the notification script or command. In so doing,
it will pass certain parameters to notification script. Below is a list of them and their basic meaning:

• --status The node passes a string indicating its current state. For a list of the strings it uses, see Node Status
Strings (page 207) below.

• --uuid The node passes a string, yes or no, to indicate whether it considers itself part of the Primary Compo-
nent.

206 Chapter 6. Cluster Monitoring

https://galeracluster.com
https://galeracluster.com/galera-mgr/

Galera Cluster Documentation, Releases 3.x and 4.x

• --members The node passes a list of the current cluster members. For more information on the format of
these, see Member List Format (page 207) below.

• --index The node passes a string that indicates its index value in the membership list.

You will have to include code in the notificaiton script to capture the values of these parameters and then have the
script act as you wish (for example, notify you of certain values).

Only nodes in the Synced state will accept connections from the cluster. For more information on node states, see
Node State Changes (page 26).

Node Status Strings

The notification script may pass one of six values for the --status parameter to indicate the current state of the
node:

• Undefined indicates a starting node that is not part of the Primary Component.

• Joiner indicates a node that is part of the Primary Component and is receiving a state snapshot transfer.

• Donor indicates a node that is part of the Primary Component and is sending a state snapshot transfer.

• Joined indicates a node that is part of the Primary Component and is in a complete state and is catching up
with the cluster.

• Synced indicates a node that is syncrhonized with the cluster.

• Error indicates that an error has occurred. This status string may provide an error code with more information
on what occurred.

Again, you will have to prepare your script to capture the value of the --status parameter and act accordingly.

Members List Format

The notification script will pass with the --member parameter, a list containing entries for each node connected to
the cluster component. For each entry in the list the node uses this format:

<node UUID> / <node name> / <incoming address>

• Node UUID refers to the unique identifier the node received from the wsrep Provider.

• Node Name refers to the node name, as it is defined with the wsrep_node_name (page 255) parameter in the
configuration file.

• Incoming Address refers to the IP address for client connections, as set with the wsrep_node_incoming_address
(page 254) parameter in the configuration file. If this is not set, then the default value will be AUTO.

Enabling the Notification Script

You can enable your notification script or command through the wsrep_notify_cmd (page 255) parameter in the con-
figuration file. Below is an excerpt from that file showing how it might look:

wsrep_notify_cmd=/path/wsrep_notify.sh

The node will call the script for each change in cluster membership and node status. You can use these status changes
in configuring load balancers, raising alerts or scripting for any other situation in which you need your infrastructure
to respond to changes to the cluster.

6.4. Notification Command 207

Galera Cluster Documentation, Releases 3.x and 4.x

Galera Cluster provides a default script, wsrep_notify.sh, for you to use in handling notifications or as a starting
point in writing your own custom notification script.

Related Documents

• Notification Script (page 208)

• wsrep_node_incoming_address (page 254)

• wsrep_node_name (page 255)

• wsrep_notify_cmd (page 255)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_notify_cmd (page 255)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.5 Notification Script Example

Nodes can call a notification script when changes happen in the membership of the cluster, that is when nodes join
or leave the cluster. You can specify the name of the script the node calls using the wsrep_notify_cmd (page 255).
While you can use whatever script meets the particular needs of a deployment, you may find it helpful to consider the
example below as a starting point.

#!/bin/sh -eu

This is a simple example of wsrep notification script (wsrep_notify_cmd).
It will create 'wsrep' schema and two tables in it: 'membership' and 'status'
and insert data into them on every membership or node status change.
#
Edit parameters below to specify the address and login to server.

USER=root
PSWD=rootpass
HOST=<host_IP_address>

(continues on next page)

208 Chapter 6. Cluster Monitoring

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

PORT=3306

SCHEMA="wsrep"
MEMB_TABLE="$SCHEMA.membership"
STATUS_TABLE="$SCHEMA.status"

BEGIN="
SET wsrep_on=0;
DROP SCHEMA IF EXISTS $SCHEMA; CREATE SCHEMA $SCHEMA;
CREATE TABLE $MEMB_TABLE (

idx INT UNIQUE PRIMARY KEY,
uuid CHAR(40) UNIQUE, /* node UUID */
name VARCHAR(32), /* node name */
addr VARCHAR(256) /* node address */

) ENGINE=MEMORY;
CREATE TABLE $STATUS_TABLE (

size INT, /* component size */
idx INT, /* this node index */
status CHAR(16), /* this node status */
uuid CHAR(40), /* cluster UUID */
prim BOOLEAN /* if component is primary */

) ENGINE=MEMORY;
BEGIN;
DELETE FROM $MEMB_TABLE;
DELETE FROM $STATUS_TABLE;

"
END="COMMIT;"

configuration_change()
{

echo "$BEGIN;"

local idx=0

for NODE in $(echo $MEMBERS | sed s/,/\ /g)
do

echo "INSERT INTO $MEMB_TABLE VALUES ($idx, "
Don't forget to properly quote string values
echo "'$NODE'" | sed s/\\//\',\'/g
echo ");"
idx=$(($idx + 1))

done

echo "
INSERT INTO $STATUS_TABLE
VALUES($idx, $INDEX,'$STATUS', '$CLUSTER_UUID', $PRIMARY);

"

echo "$END"
}

status_update()
{

echo "
SET wsrep_on=0;
BEGIN;
UPDATE $STATUS_TABLE SET status='$STATUS';

(continues on next page)

6.5. Notification Script Example 209

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

COMMIT;
"

}

COM=status_update # not a configuration change by default

while [$# -gt 0]
do

case $1 in
--status)

STATUS=$2
shift
;;

--uuid)
CLUSTER_UUID=$2
shift
;;

--primary)
["$2" = "yes"] && PRIMARY="1" || PRIMARY="0"
COM=configuration_change
shift
;;

--index)
INDEX=$2
shift
;;

--members)
MEMBERS=$2
shift
;;
esac
shift

done

Undefined means node is shutting down
if ["$STATUS" != "Undefined"]
then

$COM | mysql -B -u$USER -p$PSWD -h$HOST -P$PORT
fi

exit 0

Path and Permissions

After you modify this script to fit your requirements, you need to move it into a directory in the $PATH or the binaries
directory for your system. On Linux, the binaries directory is typically at /usr/bin, while on FreeBSD it is at
/usr/local/bin.

mv my-wsrep-notify.sh /usr/bin

In addition to this, given that the notification command contains your root password, change the ownership to the
mysql user and make sure the script is executable only by that user.

chown mysql:mysql /usr/bin/my-wsrep-notify.sh
chmod 700 /usr/bin/my-wsrep-notify.sh.

210 Chapter 6. Cluster Monitoring

Galera Cluster Documentation, Releases 3.x and 4.x

This ensures that only the mysql user can execute and read the notification script, preventing all other users from
seeing the root password.

Related Documents

• wsrep_notify_cmd (page 255)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Configure Firewall

• Disable SELinux

• Firewall Settings (page 214)

• SELinux Configuration (page 231)

• SSL Settings (page 221)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

6.5. Notification Script Example 211

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

212 Chapter 6. Cluster Monitoring

CHAPTER

SEVEN

SECURITY

On occasion, you may want or need to enable degrees of security that go beyond the basics of Unix file permissions
and secure database management.

For situations such as these, you can secure both node communications and client connections between the application
servers and the cluster.

• Firewall Settings (page 214)

In order to use Galera Cluster, nodes must have access to a number of ports to maintain network connectivity
with the cluster. While it was touched upon briefly in the Installation section, this section provides more detailed
guides on configuring a system firewall using iptables, FirewallD and PF.

• SSL Settings (page 221)

To secure communications between nodes and from the application severs, you can enable encryption through
the SSL protocol for client connections, replication traffic and State Snapshot Transfers. This section provides
guidance to configuring SSL on Galera Cluster.

• SELinux Configuration (page 231)

Without proper configuration, SELinux can either block nodes from communicating or it can block the database
server from starting at all. When it does so, it causes the given process to fail silently, without any notification
sent to standard output or error as to why. While you can configure SELinux to permit all activity from the
database server, (as was explained in the Installation section, this is not a good long-term solution.

This section provides a guide to creating an SELinux security policy for Galera Cluster.

Related Documents

• Configure Firewall

• Disable SELinux

• Firewall Settings (page 214)

• SELinux Configuration (page 231)

• SSL Settings (page 221)

The Library

• Documentation (page 1)

• Knowledge Base

213

https://galeracluster.com/galera-mgr/

Galera Cluster Documentation, Releases 3.x and 4.x

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7.1 Firewall Settings

Galera Cluster requires a number of ports to maintain network connectivity between the nodes. Depending on your
deployment, you may not require all of these ports, but a cluster might require all of them on each node. Below is a
list of these ports and their purpose:

• 3306 is the default port for MySQL client connections and State Snapshot Transfer using mysqldump for
backups.

• 4567 is reserved for Galera Cluster Replication traffic. Multicast replication uses both TCP and UDP transport
on this port.

• 4568 is the port for Incremental State Transfer.

• 4444 is used for all other State Snapshot Transfer.

How these ports are enabled for Galera Cluster can vary depending upon your operating system distribution and what
you use to configure the firewall.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Making Firewall Changes Persistent (page 216)

• Home

• Docs (page 1)

214 Chapter 7. Security

https://galeracluster.com
https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• KB

• Training

• FAQ

7.1.1 Firewall Configuration with iptables

Linux provides packet filtering support at the kernel level. Using iptables and ip6tables you can set up,
maintain and inspect tables of IPv4 and IPv6 packet filtering rules.

There are several tables that the kernel uses for packet filtering and within these tables are chains that it match specific
kinds of traffic. In order to open the relevant ports for Galera Cluster, you need to append new rules to the INPUT
chain on the filter table.

Opening Ports for Galera Cluster

Galera Cluster requires four ports for replication. There are two approaches to configuring the firewall to open these
iptables. The method you use depends on whether you deploy the cluster in a LAN environment, such as an office
network, or if you deploy the cluster in a WAN environment, such as on several cloud servers over the internet.

LAN Configuration

When configuring packet filtering rules for a LAN environment, such as on an office network, there are four ports that
you need to open to TCP for Galera Cluster and one to UDP transport to enable multicast replication. This means five
commands that you must run on each cluster node:

iptables --append INPUT --in-interface eth0 \
--protocol tcp --match tcp --dport 3306 \
--source 192.168.0.1/24 --jump ACCEPT

iptables --append INPUT --in-interface eth0 \
--protocol tcp --match tcp --dport 4567 \
--source 192.168.0.1/24 --jump ACCEPT

iptables --append INPUT --in-interface eth0 \
--protocol tcp --match tcp --dport 4568 \
--source 192.168.0.1/24 --jump ACCEPT

iptables --append INPUT --in-interface eth0 \
--protocol tcp --match tcp --dport 4444 \
--source 192.168.0.1/24 --jump ACCEPT

iptables --append INPUT --in-interface eth0 \
--protocol udp --match udp --dport 4567 \
--source 192.168.0.1/24 --jump ACCEPT

These commands open the relevant ports to TCP and UDP transport. It assumes that the IP addresses in your network
begin with 192.168.0.

Warning: The IP addresses in the example are for demonstration purposes only. Use the real values from your
nodes and netmask in your iptables configuration.

Galera Cluster can now pass packets through the firewall to the node, but the configuration reverts to default on reboot.
In order to update the default firewall configuration, see Making Firewall Changes Persistent (page 216).

7.1. Firewall Settings 215

Galera Cluster Documentation, Releases 3.x and 4.x

WAN Configuration

While the configuration shown above for LAN deployments offers the better security, only opening those ports neces-
sary for cluster operation, it does not scale well into WAN deployments. The reason is that in a WAN environment the
IP addresses are not in sequence. The four commands to open the relevant ports to TCP would grow to four commands
per node on each node. That is, for ten nodes you would need to run four hundred iptables commands across the
cluster in order to set up the firewall on each node.

Without much loss in security, you can instead open a range of ports between trusted hosts. This reduces the number
of commands to one per node on each node. For example, firewall configuration in a three node cluster would look
something like:

iptables --append INPUT --protocol tcp \
--source 64.57.102.34 --jump ACCEPT

iptables --append INPUT --protocol tcp \
--source 193.166.3.20 --jump ACCEPT

iptables --append INPUT --protocol tcp \
--source 193.125.4.10 --jump ACCEPT

When these commands are run on each node, they set the node to accept TCP connections from the IP addresses of
the other cluster nodes.

Warning: The IP addresses in the example are for demonstration purposes only. Use the real values from your
nodes and netmask in your iptables configuration.

Galera Cluster can now pass packets through the firewall to the node, but the configuration reverts to default on reboot.
In order to update the default firewall configuration, see Making Firewall Changes Persistent (page 216).

Making Firewall Changes Persistent

Whether you decide to open ports individually for LAN deployment or in a range between trusted hosts for a WAN
deployment, the tables you configure in the above sections are not persistent. When the server reboots, the firewall
reverts to its default state.

For systems that use init, you can save the packet filtering state with one command:

service save iptables

For systems that use systemd, you need to save the current packet filtering rules to the path the iptables unit
reads from when it starts. This path can vary by distribution, but you can normally find it in the /etc directory. For
example:

• /etc/sysconfig/iptables

• /etc/iptables/iptables.rules

Once you find where your system stores the rules file, use iptables-save to update the file:

iptables-save > /etc/sysconfig/iptables

When your system reboots, it now reads this file as the default packet filtering rules.

Related Documents

• Making Firewall Changes Persistent (page 216)

The Library

216 Chapter 7. Security

Galera Cluster Documentation, Releases 3.x and 4.x

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7.1.2 Firewall Configuration with FirewallD

The firewall daemon, or FirewallD, is an interface for dynamically managing firewalls on Linux operating systems. It
allows you to set up, maintain and inspect IPv4 and IPv6 firewall rules.

FirewallD includes support for defining zones. This allows you to set the trust level of a given network connection
or interface. For example, when deploying nodes that connect to each other over the internet–rather than a private
network–you might configure your firewall around the public zone. This assumes that other computers on the
network are untrusted and only accept designated connections.

For more information on FirewallD, see the Documentation.

Opening Ports for Galera Cluster

Galera Cluster requires four open ports for replication over TCP. To use multicast replication, it also requires one for
UDP transport. In order for this to work over FirewallD, you also need to add the database service to the firewall rules.

To enable the database service for FirewallD, you would enter something like the following at the command-line:

firewall-cmd --zone=public --add-service=mysql

Next, you will need to open the TCP ports for Galera Cluster. Do this by executing the following from the command-
line:

firewall-cmd --zone=public --add-port=3306/tcp
firewall-cmd --zone=public --add-port=4567/tcp
firewall-cmd --zone=public --add-port=4568/tcp
firewall-cmd --zone=public --add-port=4444/tcp

7.1. Firewall Settings 217

https://galeracluster.com
https://fedoraproject.org/wiki/FirewallD
https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

Optionally, if you would like to use multicast replication, execute the following from the command-line to open UDP
transport on 4567:

firewall-cmd --zone=public --add-port=4567/udp

These commands dynamically configure FirewallD. Your firewall will then permit the rest of the cluster to connect to
the node hosted on the server. Repeat the above commands on each server. Keep in mind, changes to the firewall made
by this method are not persistent. When the server reboots, FirewallD will return to its default state.

Making Firewall Changes Persistent

The commands given in the above section allow you to configure FirewallD on a running server and update the firewall
rules without restarting. However, these changes are not persistent. When the server restarts, FirewallD reverts to its
default configuration. To change the default configuration, a somewhat different approach is required:

First, enable the database service for FirewallD by entering the following from the command-line:

firewall-cmd --zone=public --add-service=mysql \
--permanent

Now, you will need to open the TCP ports for Galera Cluster. To do so, enter the following lines from the command-
line:

firewall-cmd --zone=public --add-port=3306/tcp \
--permanent

firewall-cmd --zone=public --add-port=4567/tcp \
--permanent

firewall-cmd --zone=public --add-port=4568/tcp \
--permanent

firewall-cmd --zone=public --add-port=4444/tcp \
--permanent

If you would like to use multicast replication, execute the following command. It will open UDP transport on 4567.

firewall-cmd --zone=public --add-port=4567/udp \
--permanent

Now you just need to reload the firewall rules, maintaining the current state information. To do this, executing the
following:

firewall-cmd --reload

These commands modify the default FirewallD settings and then cause the new settings to take effect, immediately.
FirewallD will then be configured to allow the rest of the cluster to access the node. The configuration remains in
effect after reboots. You’ll have to repeat these commands on each server.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

218 Chapter 7. Security

Galera Cluster Documentation, Releases 3.x and 4.x

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7.1.3 Firewall Configuration with PF

FreeBSD provides packet filtering (that is, PF) support at the kernel level. Using PF you can set up, maintain and
inspect the packet filtering rule sets.

Warning: Different versions of FreeBSD use different versions of PF. Examples here are from FreeBSD 10.1,
which uses the same version of PF as OpenBSD 4.5.

Enabling PF

In order to use PF on FreeBSD, you must first set the system up to load its kernel module. Additionally, you need to
set the path to the configuration file for PF.

Using your preferred text editor, add the following lines to /etc/rc.conf:

pf_enable="YES"
pf_rules="/etc/pf.conf"

You may also want to enable logging support for PF and set the path for the log file. This can be done by adding the
following lines to /etc/rc.conf:

pflog_enable="YES"
pflog_logfile="/var/log/pflog"

FreeBSD now loads the PF kernel module with logging features at boot.

Configuring PF Rules

In the above section, the configuration file for PF was set to /etc/pf.conf. This file allows you to set up the
default firewall configuration that you want to use on your server. The settings you add to this file are the same for
each cluster node.

There are two variables that you need to define for Galera Cluster in the PF configuration file: a list for the ports it
needs open for TCP and a table for the IP addresses of nodes in the cluster.

Galera Cluster Macros
wsrep_ports="{ 3306, 4567, 4568, 4444}"
table <wsrep_cluster_address> persist {192.168.1.1 192.168.1.2 192.168.1.3}"

Once you have these defined, you can add the rule to allow cluster packets to pass through the firewall.

7.1. Firewall Settings 219

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Galera Cluster TCP Filter Rule
pass in proto tcp from <wsrep_cluster_address> to any port $wsrep_ports keep state

If you deployed a cluster in a LAN environment, you need to also create on additional rule to open port 4567 to UDP
transport for multicast replication.

Galera Cluster UDP Filter Rule
pass in proto udp from <wsrep_cluster_address> to any port 4567 keep state

This defines the packet filtering rules that Galera Cluster requires. You can test the new rules for syntax errors using
pfctl, with the -n options to prevent it from trying to load the changes.

pfctl -v -nf /etc/pf.conf

wsrep_ports = "{ 3306, 4567, 4568, 4444 }"
table <wsrep_cluster_address> persist { 192.168.1.1 192.168.1.2 192.168.1.3 }
pass in proto tcp from <wsrep_cluster_address> to any port = mysql flags S/A/ keep
→˓state
pass in proto tcp from <wsrep_cluster_address> to any port = 4567 flags S/SA keep
→˓state
pass in proto tcp from <wsrep_cluster_address> to any port = 4568 flags S/SA keep
→˓state
pass in proto tcp from <wsrep_cluster_address> to any port = krb524 falgs S/SA keep
→˓state
pass in proto udp from <wsrep_cluster_address> to any port = 4567 keep state

If there are no syntax errors, pfctl prints each of the rules it adds to the firewall, (expanded, as in the example
above). If there are syntax errors, it notes the line near where the errors occur.

Warning: The IP addresses in the example are for demonstration purposes only. Use the real values from your
nodes and netmask in your PF configuration.

Starting PF

When you finish configuring packet filtering for Galera Cluster and for any other service you may require on your
FreeBSD server, you can start the service. This is done with two commands: one to start the service itself and one to
start the logging service.

service pf start
service pflog start

In the event that you have PF running already and want to update the rule set to use the settings in the configuration
file for PF, (for example, the rules you added for Galera Cluster), you can load the new rules through the pfctl
command.

pfctl -f /etc/pf.conf

The Library

• Documentation (page 1)

• Knowledge Base

• Training

220 Chapter 7. Security

Galera Cluster Documentation, Releases 3.x and 4.x

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7.2 SSL Settings

Galera Cluster supports secure encrypted connections between nodes using SSL (Secure Socket Layer) protocol.
This includes connections between database clients and servers through the standard SSL support in MySQL. It also
includes encrypting replication traffic particular to Galera Cluster itself.

The SSL implementation is cluster-wide and does not support authentication for replication traffic. You must enable
SSL for all nodes in the cluster or none of them.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• SSL Configuration (page 224)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7.2. SSL Settings 221

https://galeracluster.com
https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

7.2.1 SSL Certificates

Before you can enable encryption for your cluster, you first need to generate the relevant certificates for the nodes to
use. This procedure assumes that you are using OpenSSL.

Note: This chapter only covers certificate generation. For information on its use in Galera Cluster, see SSL Configu-
ration (page 224).

Generating Certificates

There are three certificates that you need to create in order to secure Galera Cluster: the Certificate Authority (CA)
key and cert; the server certificate, to secure mysqld activity and replication traffic; and the client certificate to secure
the database client and stunnel for state snapshot transfers.

Note: When certificates expire there is no way to update the cluster without a complete shutdown. You can minimize
the frequency of this downtime by using large values for the -days parameter when generating your certificates.

CA Certificate

The node uses the Certificate Authority to verify the signature on the certificates. As such, you need this key and cert
file to generate the server and client certificates.

To create the CA key and cert, complete the following steps:

1. Generate the CA key.

openssl genrsa 2048 > ca-key.pem

2. Using the CA key, generate the CA certificate.

openssl req -new -x509 -nodes -days 365000 \
-key ca-key.pem -out ca-cert.pem

This creates a key and certificate file for the Certificate Authority. They are in the current working directory as
ca-key.pem and ca-cert.pem. You need both to generate the server and client certificates. Additionally, each
node requires ca-cert.pem to verify certificate signatures.

Server Certificate

The node uses the server certificate to secure both the database server activity and replication traffic from Galera
Cluster.

1. Create the server key.

openssl req -newkey rsa:2048 -days 365000 \
-nodes -keyout server-key.pem -out server-req.pem

2. Process the server RSA key.

openssl rsa -in server-key.pem -out server-key.pem

3. Sign the server certificate.

222 Chapter 7. Security

Galera Cluster Documentation, Releases 3.x and 4.x

openssl x509 -req -in server-req.pem -days 365000 \
-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 \
-out server-cert.pem

This creates a key and certificate file for the server. They are in the current working directory as server-key.pem
and server-cert.pem. Each node requires both to secure database server activity and replication traffic.

Client Certificate

The node uses the client certificate to secure client-side activity. In the event that you prefer physical transfer methods
for state snapshot transfers, rsync for instance, the node also uses this key and certificate to secure stunnel.

1. Create the client key.

openssl req -newkey rsa:2048 -days 365000 \
-nodes -keyout client-key.pem -out client-req.pem

2. Process client RSA key.

openssl rsa -in client-key.pem -out client-key.pem

3. Sign the client certificate.

openssl x509 -req -in client-req.pem -days 365000 \
-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 \
-out client-cert.pem

This creates a key and certificate file for the database client. They are in the current working directory as
client-key.pem and client-cert.pem.

Note: Each node requires both to secure client activity and state snapshot transfers.

Verifying the Certificates

When you finish creating the key and certificate files, use openssl to verify that they were generated correctly:

openssl verify -CAfile ca-cert.pem \
server-cert.pem client-cert.pem

server-cert.pem: OK
client-cert.pem: OK

In the event that this verification fails, repeat the above process to generate replacement certificates.

The Common Name value used for the server and client certificates/keys must each differ from the Common Name
value used for the CA certificate. Otherwise, the certificate and key files will not work for servers compiled using
OpenSSL.

Once the certificates pass verification, you can send them out to each node. Use a secure method, such as scp or
sftp. The node requires the following files:

• Certificate Authority: ca-cert.pem.

• Server Certificate: server-key.pem and server-cert.pem.

7.2. SSL Settings 223

Galera Cluster Documentation, Releases 3.x and 4.x

• Client Certificate: client-key.pem and client-cert.pem.

Place these files in the /etc/mysql/certs directory of each node, or a similar location where you can find them
later in configuring the cluster to use SSL.

Related Documents

• SSL Configuration (page 224)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• SSL Certificates (page 222)

• SSL for State Snapshot Transfers (page 227)

• Galera Parameters (page 275)

• socket.ssl_key (page 310)

• socket.ssl_cert (page 308)

• socket.ssl_ca (page 308)

• wsrep_provider_options (page 259)

• socket.checksum (page 308)

• socket.ssl_cipher (page 309)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7.2.2 SSL Configuration

When you finish generating the SSL certificates for your cluster, you need to enable it for each node. If you have not
yet generated the SSL certificates, see SSL Certificates (page 222) for a guide on how to do so.

Note: For Galera Cluster, SSL configurations are not dynamic. Since they must be set on every node in the cluster, if
you are enabling this feature with a running cluster you need to restart the entire cluster.

224 Chapter 7. Security

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Enabling SSL

There are three vectors that you can secure through SSL: traffic between the database server and client, replication
traffic within Galera Cluster, and the State Snapshot Transfer.

Note: The configurations shown here cover the first two. The procedure for securing state snapshot transfers through
SSL varies depending on the SST method you use. For more information, see SSL for State Snapshot Transfers
(page 227).

Securing the Database

For securing database server and client connections, you can use the internal MySQL SSL support. In the event that
you use logical transfer methods for state snapshot transfer, such as mysqldump, this is the only step you need to
take in securing your state snapshot transfers.

In the configuration file, (my.cnf), add the follow parameters to each unit:

MySQL Server
[mysqld]
ssl-ca = /path/to/ca-cert.pem
ssl-key = /path/to/server-key.pem
ssl-cert = /path/to/server-cert.pem

MySQL Client Configuration
[mysql]
ssl-ca = /path/to/ca-cert.pem
ssl-key = /path/to/client-key.pem
ssl-cert = /path/to/client-cert.pem

These parameters tell the database server and client which files to use in encrypting and decrypting their interactions
through SSL. The node will begin to use them once it restarts.

Securing Replication Traffic

In order to enable SSL on the internal node processes, you need to define the paths to the key, certificate and certificate
authority files that you want the node to use in encrypting replication traffic.

• socket.ssl_key (page 310) The key file.

• socket.ssl_cert (page 308) The certificate file.

• socket.ssl_ca (page 308) The certificate authority file.

You can configure these options through the wsrep_provider_options (page 259) parameter in the configuration file,
(that is, my.cnf).

wsrep_provider_options="socket.ssl_key=/path/to/server-key.pem;socket.ssl_cert=/path/
→˓to/server-cert.pem;socket.ssl_ca=/path/to/cacert.pem"

This tells Galera Cluster which files to use in encrypting and decrypting replication traffic through SSL. The node will
begin to use them once it restarts.

7.2. SSL Settings 225

Galera Cluster Documentation, Releases 3.x and 4.x

Configuring SSL

In the event that you want or need to further configure how the node uses SSL, Galera Cluster provides some additional
parameters, including defining the cyclic redundancy check and setting the cryptographic cipher algorithm you want
to use.

Note: For a complete list of available configurations available for SSL, see the options with the socket. prefix at
Galera Parameters (page 275).

Configuring the Socket Checksum

Using the socket.checksum (page 308) parameter, you can define whether or which cyclic redundancy check the node
uses in detecting errors. There are three available settings for this parameter, which are defined by an integer:

• 0 Disables the checksum.

• 1 Enables the CRC-32 checksum.

• 2 Enables the CRC-32C checksum.

The default configuration for this parameter is 1 or 2 depending upon your version. CRC-32C is optimized for and
potentially hardware accelerated on Intel CPU’s.

wsrep_provider_options = "socket.checksum=2"

Configuring the Encryption Cipher

Using the socket.ssl_cipher (page 309) parameter, one can override the default SSL cipher the node uses to encrypt
replication traffic. Galera Cluster uses whatever ciphers are available to the SSL implementation installed on the
nodes. For instance, if you install OpenSSL on your node, Galera Cluster can use any cipher supported by OpenSSL,
as well as use filters to ensure that “weak” algorithms are not accepted on connection handshake.

wsrep_provider_options = "socket.ssl_cipher=ALL:!EXP:!NULL:!ADH:!LOW:!SSLv2:!SSLv3:!
→˓MD5:!RC4:!RSA"

Related Documents

• SSL Certificates (page 222)

• SSL for State Snapshot Transfers (page 227)

• Galera Parameters (page 275)

• socket.ssl_key (page 310)

• socket.ssl_cert (page 308)

• socket.ssl_ca (page 308)

• wsrep_provider_options (page 259)

• socket.checksum (page 308)

• socket.ssl_cipher (page 309)

The Library

• Documentation (page 1)

226 Chapter 7. Security

Galera Cluster Documentation, Releases 3.x and 4.x

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• SSL Configuration (page 224)

• Schema Upgrades (page 85)

• wsrep_OSU_method (page 258)

• wsrep_sst_auth (page 265)

• wsrep_sst_method (page 267)

Related Articles

• Starting a Cluster

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7.2.3 SSL for State Snapshot Transfers

When you finish generating the SSL certificates for your cluster, you can begin configuring the node for their use.
Where SSL Configuration (page 224) covers how to enable SSL for replication traffic and the database client, this page
covers enabling it for State Snapshot Transfer scripts.

The particular method you use to secure the State Snapshot Transfer through SSL depends upon the method you use
in state snapshot transfers: mysqldump, clone, rsync or xtrabackup.

Note: For Gelera Cluster, SSL configurations are not dynamic. Since they must be set on every node in the cluster, if
you want to enable this feature with an existing cluster you need to restart the entire cluster.

Enabling SSL for mysqldump

The procedure for securing mysqldump is fairly similar to that of securing the database server and client through
SSL. Given that mysqldump connects through the database client, you can use the same SSL certificates you created
for replication traffic.

Before you shut down the cluster, you need to create a user for mysqldump on the database server and grant it
privileges through the cluster. This ensures that when the cluster comes back up, the nodes have the correct privileges

7.2. SSL Settings 227

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

to execute the incoming state snapshot transfers. In the event that you use the Total Order Isolation online schema
upgrade method, you only need to execute the following commands on a single node.

1. From the database client, check that you use Total Order Isolation for online schema upgrades.

SHOW VARIABLES LIKE 'wsrep_OSU_method';

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| wsrep_OSU_method | TOI |
+------------------+-------+

If wsrep_OSU_method (page 258) is set to Rolling Schema Upgrade, or ROI, then you need to execute the
following commands on each node individually.

2. Create a user for mysqldump.

CREATE USER 'sst_user'@'%' IDENTIFIED BY PASSWORD 'sst_password';

Bear in mind that, due to the manner in which the SST script is called, the user name and password must be the
same on all nodes.

3. Grant privileges to this user and require SSL.

GRANT ALL ON *.* TO 'sst_user'@'%' REQUIRE SSL;

4. From the database client on a different node, check to ensure that the user has replicated to the cluster.

SELECT User, Host, ssl_type
FROM mysql.user WHERE User='sst_user';

+----------+------+----------+
| User | Host | ssl_type |
+----------+------+----------+
| sst_user | % | Any |
+----------+------+----------+

This configures and enables the mysqldump user for the cluster.

Note: In the event that you find, wsrep_OSU_method (page 258) set to ROI, you need to manually create the user on
each node in the cluster. For more information on rolling schema upgrades, see Schema Upgrades (page 85).

With the user now on every node, you can shut the cluster down to enable SSL for mysqldump State Snapshot
Transfers.

1. Using your preferred text editor, update the my.cnf configuration file to define the parameters the node requires
to secure state snapshot transfers.

MySQL Server
[mysqld]
ssl-ca = /path/to/ca-cert.pem
ssl-key = /path/to/server-key.pem
ssl-cert = /path/to/server-cert.pem

MySQL Client Configuration
[client]

(continues on next page)

228 Chapter 7. Security

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

ssl-ca = /path/to/ca-cert.pem
ssl-key = /path/to/client-key.pem
ssl-cert = /path/to/client-cert.pem

2. Additionally, configure wsrep_sst_auth (page 265) with the SST user authentication information.

[mysqld]
mysqldump SST auth
wsrep_sst_auth = sst_user:sst_password

This configures the node to use mysqldump for state snapshot transfers over SSL. When all nodes are updated to
SSL, you can begin restarting the cluster. For more information on how to do this, see Starting a Cluster.

Enabling SSL for clone based SST

Configurations for clone are handled through the my.cnf configuration file, in the same manner as for
mysqldump-based SST above. You can use the same SSL certificate files as the node uses on the database server,
client and with replication traffic.

clone Configuration
[mysqld]
ssl-cert= /path/to/server-cert.pem
ssl-key= /path/to/server-key.pem
ssl-ca= /path/to/ca.pem

[client] # or [sst]
ssl-cert= /path/to/client-cert.pem
ssl-key= /path/to/client-key.pem
ssl-ca= /path/to/ca.pem
ssl-mode= VERIFY_CA

Client SSL configuration on Donor Node must match server SSL configuration on Joiner. (That means: mysql client
using client SSL configuration from Joiner should be able to connect to server on Donor) Client SSL configuration on
Joiner must match CLONE SSL configuration on donor. If CLONE plugin on Donor is not loaded, or if CLONE SSL
configuration is empty then server SSL configuration on Donor is used.

If for some reason general client SSL configuration is undesirable, client SSL configuration for clone SST can be
put into the [sst] section of the configuration file. It will be used first.

Enabling SSL for xtrabackup and rsync based SSTs

The Physical State Transfer Method for state snapshot transfers, uses an external script to copy the physical data di-
rectly from the file system on one cluster node into another. Before releases 5.7.34 and 8.0.25 only xtrabackup-v2
SST supported SSL encryption and required custom configuration. Starting with releases 5.7.34 and 8.0.25 both
rsync and xtrabackup-v2 scripts can use the standard MySQL SSL configuration and will use it BY DEFAULT.

New way SSL configuration for xtrabackup-v2 and rsync SSTs (releases 5.7.34 and 8.0.25 or
newer)

If [mysqld] or [server] section of the configuration contains

7.2. SSL Settings 229

Galera Cluster Documentation, Releases 3.x and 4.x

[mysqld]
ssl-cert= /path/to/server-cert.pem
ssl-key= /path/to/server-key.pem
ssl-ca= /path/to/ca.pem

those credentials will be automatically used for SSL encryption of SST unless explicitly overridden with the same
parameters in [sst] section.

For backward compatibility no peer/CA authentication is performed unless explicitly requested in the [sst] section
of the configuration using the standard ssl-mode option:

[sst]
ssl-mode=VERIFY_CA

or

[sst]
ssl-mode=VERIFY_IDENTITY

This is a backward incompatible option and should be used only on fully upgraded clusters.

[sst]
ssl-mode=DISABLED

disables SSL encryption for SST regardless server SSL settings

Old way SSL configuration for xtrabackup-v2 SST

This is deprecated, but for backward compatibility takes precedence if present.

Configurations for xtrabackup-v2 script are handled through the my.cnf configuration file, in the same as the
database server and client. Use the [sst] unit to configure SSL for the script. You can use the same SSL certificate
files as the node uses on the database server, client and with replication traffic.

xtrabackup Configuration
[sst]
encrypt = 3
tca = /path/to/ca.pem
tkey = /path/to/key.pem
tcert = /path/to/cert.pem

When you finish editing the configuration file, restart the node to apply the changes. xtrabackup now sends and
receives state snapshot transfers through SSL.

Note: In order to use SSL with xtrabackup, you need to set wsrep_sst_method (page 267) to xtrabackup-v2,
instead of xtrabackup.

Related Documents

• SSL Configuration (page 224)

• Schema Upgrades (page 85)

• wsrep_OSU_method (page 258)

• wsrep_sst_auth (page 265)

230 Chapter 7. Security

Galera Cluster Documentation, Releases 3.x and 4.x

• wsrep_sst_method (page 267)

Related Articles

• Starting a Cluster

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• wsrep_notify_cmd (page 255)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

7.3 SELinux Configuration

Security-Enhanced Linux, or SELinux, is a kernel module for improving security of Linux operating systems. It
integrates support for access control security policies, including mandatory access control (MAC), that limit user
applications and system daemons access to files and network resources. Some Linux distributions, such as Red Hat
Enterprise Linux or CentOS, ship with SELinux enabled by default.

In the context of Galera Cluster, systems with SELinux may block the database server, keeping it from starting or
preventing the node from establishing connections with other nodes in the cluster. To prevent this, you need to
configure SELinux policies to allow the node to operate.

Generating an SELinux Policy

In order to create an SELinux policy for Galera Cluster, you need to first open ports and set SELinux to permissive
mode. Then, after generating various replication events, state transfers and notifications, create a policy from the logs
of this activity and reset SELinux from to enforcing mode.

Setting SELinux to Permissive Mode

When SELinux registers a system event, there are three modes that define its response: enforcing, permissive and
disabled. While you can set it to permit all activity on the system, this is not a good security practice. Instead, set
SELinux to permit activity on the relevant ports and to ignore the database server.

7.3. SELinux Configuration 231

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

To set SELinux to permissive mode, complete the following steps:

1. Using semanage, open the relevant ports:

semanage port -a -t mysqld_port_t -p tcp 4567
semanage port -a -t mysqld_port_t -p tcp 4568
semanage port -a -t mysqld_port_t -p tcp 4444

SELinux already opens the standard MySQL port 3306. In the event that you use UDP in your cluster, you also
need to open 4567 to those connections.

semanage port -a -t mysqld_port_t -p udp 4567

2. Set SELinux to permissive mode for the database server.

semanage permissive -a mysqld_t

SELinux now permits the database server to function on the server and no longer blocks the node from network
connectivity with the cluster.

Defining the SELinux Policy

While SELinux remains in permissive mode, it continues to log activity from the database server. In order for it to
understand normal operation for the database, you need to start the database and generate routine events for SELinux
to see.

For servers that use init, start the database with the following command:

service mysql start

For servers that use systemd, instead run this command:

systemctl mysql start

You can now begin to create events for SELinux to log. There are many ways to go about this, including:

• Stop the node, then make changes on another node before starting it again. Not being that far behind, the node
updates itself using an Incremental State Transfer.

• Stop the node, delete the grastate.dat file in the data directory, then restart the node. This forces a State
Snapshot Transfer.

• Restart the node, to trigger the notification command as defined by wsrep_notify_cmd (page 255).

When you feel you have generated sufficient events for the log, you can begin work creating the policy and turning
SELinux back on.

Note: In order to for your policy to work you must generate both State Snapshot and Incremental State transfers.

Enabling an SELinux Policy

Generating an SELinux policy requires that you search log events for the relevant information and pipe it to the
audit2allow utility, creating a galera.te file to load into SELinux.

To generate and load an SELinux policy for Galera Cluster, complete the following steps:

1. Using fgrep and audit2allow, create a textease file with the policy information.

232 Chapter 7. Security

Galera Cluster Documentation, Releases 3.x and 4.x

fgrep "mysqld" /var/log/audit/audit.log | audit2allow -m MySQL_galera -o galera.te

This creates a galera.te file in your working directory.

2. Compile the audit logs into an SELinux policy module.

checkmodule -M -m galera.te -o galera.mod

This creates a galera.mod file in your working directory.

3. Package the compiled policy module.

semodule_package -m galera.mod -o galera.pp

This creates a galera.pp file in your working directory.

4. Load the package into SELinux.

semodule -i galera.pp

5. Disable permissive mode for the database server.

semanage permissive -d mysql_t

SELinux returns to enforcement mode, now using new policies that work with Galera Cluster.

Related Documents

• wsrep_notify_cmd (page 255)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Galera Parameters (page 275)

• Galera Status Variables (page 312)

• Galera System Tables (page 80)

• GLB Parameters (page 345)

• MySQL wsrep Options (page 237)

• Galera Functions (page 273)

• Versioning Information (page 354)

• XtraBackup-v2 Parameters (page 337)

• Home

7.3. SELinux Configuration 233

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• Docs (page 1)

• KB

• Training

• FAQ

234 Chapter 7. Security

CHAPTER

EIGHT

REFERENCE

In the event that you need more information about particular variables or parameters or status variable or would like a
clearer explanation about various terms used in the documentation, these chapters provide general reference material
to Galera Cluster configuration and use.

Variable Reference

Defining persistent configurations in Galera Cluster is done through the underlying database server, using the
[mysqld] unit in the my.cnf configuration file. These chapters provide reference guides to the base replica-
tion status and configuration variables as well as the specific wsrep Provider options implemented through the Galera
Replication Plugin.

• MySQL wsrep Options (page 237)

In addition to the standard configuration variables available through the database server, Galera Cluster imple-
ments several that are unique and specific to fine-tuning database replication. This chapter provides a reference
guide to these new configuration variables in Galera Cluster

• Galera Functions (page 273)

There are a few Galera specific functions. This page lists and explains them, as well as gives examples of their
use.

• Galera Parameters (page 275)

The Galera Replication Plugin, which acts as the wsrep Provider, includes a number of parameters specific to
its operation. This chapter provides a reference guide to the various wsrep Provider options available.

• Galera Status Variables (page 312)

In addition to the standard status variables available through the database server, Galera Cluster also implements
several that you can use in determining the status and health of the node and the cluster. This chapter provides
a reference guide to these new status variables in Galera Cluster.

Utility Reference

In some cases your configuration or implementation may require that you work with external utilities in your deploy-
ment of Galera Cluster. These chapters provide reference guides for two such utilities: XtraBackup and Galera Load
Balancer.

• Galera Load Balancer Parameters (page 345)

In high availability situations or similar cases where nodes are subject to high traffic situations, you may find
it beneficial to set up a load balancer between your application servers and the cluster. This chapter provides a
reference guide to the Codership implementation: the Galera Load Balancer.

235

Galera Cluster Documentation, Releases 3.x and 4.x

• XtraBackup-v2 Parameters (page 337)

When you manage State Snapshot Transfers using Percona XtraBackup, it allows you to set various parameters
on the state transfer script the node uses from the my.cnf configuration file. This chapter provides a reference
guide to options available to XtraBackup.

• Galera System Tables (page 80)

This page provides information on the Galera specific system tables. These were added as of version 4 of Galera.

Miscellaneous References

• Versioning Information (page 354)

While the documentation follows a convention of 3.x in speaking of release versions for Galera Cluster, in
practice the numbering system is somewhat more complicated: covering releases of the underlying database
server, the wsrep Provider and the wsrep API. This chapter provides a more thorough explanation of versioning
with Galera Cluster.

• Legal Notice (page 356)

This page provides information on the documentation copyright.

• Glossary (page 357)

In the event that you would like clarification on particular topics, this chapter provides reference information on
core concepts in Galera Cluster.

• genindex

In the event that you would like to check these concepts against related terms to find more information in the
docs, this chapter provides a general index of the site.

Related Documents

• Galera Parameters (page 275)

• Galera Status Variables (page 312)

• Galera System Tables (page 80)

• GLB Parameters (page 345)

• MySQL wsrep Options (page 237)

• Galera Functions (page 273)

• Versioning Information (page 354)

• XtraBackup-v2 Parameters (page 337)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

236 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

8.1 MySQL wsrep Options

These are MySQL system variables starting from wsrep API patch version 21.1 for MySQL 5.1.58. Although there
were earlier versions of MySQL-wsrep, this was the first one to use consistent versioning scheme as was chosen as the
starting point.

Almost all of the variables are global except for a few. Those are session variables. If you click on a particular variable
in this table, your web browser will scroll down to the entry for it with more details and an explanation.

Option Default Value Global Dynamic
innodb-wsrep-applier-lock-wait-
timeout (page 238)

0 Yes Yes

wsrep_applier_FK_failure_retries
(page 239)

1 Yes Yes

wsrep_auto_increment_control
(page 239)

ON Yes

wsrep_causal_reads (page 240) OFF
wsrep_certify_nonPK (page 241) ON Yes
wsrep_certification_rules (page 240) Yes
wsrep_cluster_address (page 241) ON Yes
wsrep_cluster_name (page 242) example_cluster Yes
wsrep_convert_LOCK_to_trx
(page 243)

OFF Yes

wsrep_data_home_dir (page 244) /path/to/datadir Yes
wsrep_dbug_option (page 244) Yes
wsrep_debug (page 245) OFF Yes
wsrep_desync (page 246) OFF Yes
wsrep_dirty_reads (page 247) OFF Yes Yes
wsrep_drupal_282555_workaround
(page 247)

ON Yes

wsrep_forced_binlog_format
(page 248)

NONE Yes

wsrep_ignore_apply_errors
(page 249)

7 Yes Yes

wsrep_info_level (page 249) 0 Yes Yes
wsrep_load_data_splitting (page 250) ON Yes
wsrep_log_conflicts (page 250) OFF Yes
wsrep_max_ws_rows (page 251) 0 Yes
wsrep_max_ws_size (page 251) 1G Yes
wsrep_mode (page 252) ON Yes Yes
wsrep_node_address (page 253) host address:default port Yes

Continued on next page

8.1. MySQL wsrep Options 237

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Table 1 – continued from previous page
Option Default Value Global Dynamic
wsrep_node_incoming_address
(page 254)

host address:mysqld port Yes

wsrep_node_name (page 255) <hostname> Yes
wsrep_notify_cmd (page 255) Yes
wsrep_on (page 257) ON Yes
wsrep_OSU_method (page 258) TOI Yes
wsrep_preordered (page 258) OFF Yes
wsrep_provider (page 259) NONE Yes
wsrep_provider_options (page 259) Yes
wsrep_recover (page 260) OFF Yes No
wsrep_reject_queries (page 261) NONE Yes Yes
wsrep_restart_replica (page 261) OFF Yes Yes
wsrep_restart_slave (page 262) OFF Yes Yes
wsrep_retry_autocommit (page 262) 1 Yes
wsrep_applier_FK_checks (page 262) ON Yes Yes
wsrep_slave_FK_checks (page 263) ON Yes Yes
wsrep_applier_threads (page 263) 1 Yes Yes
wsrep_slave_threads (page 264) 1 Yes
wsrep_applier_UK_checks (page 264) OFF Yes Yes
wsrep_slave_UK_checks (page 264) OFF Yes Yes
wsrep_sst_auth (page 265) Yes
wsrep_sst_donor (page 265) Yes
wsrep_sst_donor_rejects_queries
(page 266)

OFF Yes

wsrep_sst_method (page 267) mysqldump Yes
wsrep_sst_receive_address (page 268) node IP address Yes Yes
wsrep_start_position (page 268) see reference entry Yes
wsrep_status_file (page 269) Yes No
wsrep_sync_server_uuid (page 270) 0 Yes Yes
wsrep_sync_wait (page 270) 0 Yes Yes
wsrep_trx_fragment_size (page 271) 0 Yes Yes
wsrep_trx_fragment_unit (page 272) bytes Yes Yes

You can execute the SHOW VARIABLES statement with the LIKE operator as shown below to get list of all Galera
related variables on your server:

SHOW VARIABLES LIKE 'wsrep%';

The results will vary depending on which version of Galera is running on your server. All of the parameters and
variables possible are listed above, but they’re listed below with explanations of each.

innodb-wsrep-applier-lock-wait-timeout

The innodb-wsrep-applier-lock-wait-timeout parameter defines the timeout in seconds, after which
the wsrepw watchdog starts killing local transactions that are blocking the applier. Value 0 disables the watchdog.

238 Chapter 8. Reference

https://galeracluster.com/support/#galera-cluster-support-subscription

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --innodb-wsrep-applier-lock-wait-timeout
System Variable innodb-wsrep-applier-lock-wait-timeout
Variable Scope Global
Dynamic Variable Yes
Permitted Values 0 or timeout in seconds
Default Value 0
Initial Version MySQL-wsrep 8.0.26-26.8

You can execute the following SHOW VARIABLES statement to see how this variable is set:

SHOW VARIABLES LIKE 'innodb-wsrep-applier-lock-wait-timeout';

+--+-------+
| Variable_name | Value |
+--+-------+
| innodb-wsrep-applier-lock-wait-timeout | 10 |
+--+-------+

wsrep_applier_FK_failure_retries

Occasionally, foreign key constrains may fail even though the constraints themselves are not violated (for example, if
the same transaction inserts in the parent table, and the next insert into the child table fails in FK checks). With this
foreign key constraint check retrying implementation, you can control the number of retries. If the constraint check
fails despite retires, the final retry prints out a warning with an error code and InnoDB system monitor output for
further troubleshooting.

Command-line Format --wsrep_applier_FK_failure_retries
System Variable wsrep_applier_FK_failure_retries
Variable Scope Global
Dynamic Variable Yes
Permitted Values Integer
Default Value 1
Initial Version MySQL-wsrep 8.0.35

You can execute the following SHOW VARIABLES statement to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_applier_FK_failure_retries';

+--+-------+
| Variable_name | Value |
+--+-------+
| wsrep_applier_FK_failure_retries | 1 |
+--+-------+

wsrep_auto_increment_control

This parameter enables the automatic adjustment of auto increment system variables with changes in cluster member-
ship.

8.1. MySQL wsrep Options 239

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-auto-increment-control
System Variable wsrep_auto_increment_control
Variable Scope Global
Dynamic Variable
Permitted Values Boolean
Default Value ON
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

The node manages auto-increment values in a table using two variables: auto_increment_increment and
auto_increment_offset. The first relates to the value auto-increment rows count from the offset. The second
relates to the offset it should use in moving to the next position.

The wsrep_auto_increment_control (page 239) parameter enables additional calculations to this process, using the
number of nodes connected to the Primary Component to adjust the increment and offset. This is done to reduce the
likelihood that two nodes will attempt to write the same auto-increment value to a table.

It significantly reduces the rate of certification conflicts for INSERT statements. You can execute the following SHOW
VARIABLES statement to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_auto_increment_control';

+------------------------------+-------+
| Variable_name | Value |
+------------------------------+-------+
| wsrep_auto_increment_control | ON |
+------------------------------+-------+

wsrep_causal_reads

This parameter enables the enforcement of strict cluster-wide READ COMMITTED semantics on non-transactional
reads. It results in larger read latencies.

Command-line Format --wsrep-causal-reads
System Variable wsrep_causal_reads
Variable Scope Session
Dynamic Variable
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21
Deprecated Version MySQL-wsrep: 5.5.42-25.12

You can execute the following SHOW VARIABLES statement with a LIKE operator to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_causal_reads';

Warning: The wsrep_causal_reads option has been deprecated. It has been replaced by wsrep_sync_wait
(page 270).

240 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_certification_rules

Certification rules to use in the cluster.

Command-line Format --wsrep-certification-rules
System Variable wsrep_certification_rules
Variable Scope Global
Dynamic Variable Yes
Permitted Values Enumeration
Default Value STRICT
Valid Value OPTIMIZED, STRICT
Initial Version MySQL-wsrep: 5.5.61-25.24, 5.6.41-25.23, 5.7.23-25.15
Deprecated Version MySQL-wsrep: 8.0.19-26.3

Controls how certification is done in the cluster. To be more specific, this parameter affects how foreign keys are
handled: with the STRICT option, two INSERTs that happen at about the same time on two different nodes in a child
table, and insert different (non conflicting) rows, but both rows point to the same row in the parent table, could result
in certification failure. With the OPTIMIZED option, such certification failure is avoided.

SHOW VARIABLES LIKE 'wsrep_certification_rules';

+---------------------------+--------+
| Variable_name | Value |
+---------------------------+--------+
| wsrep_certification_rules | STRICT |
+---------------------------+--------+

wsrep_certify_nonPK

This parameter is used to define whether the node should generate primary keys on rows without them for the purposes
of certification.

Command-line Format --wsrep-certify-nonpk
System Variable wsrep_certify_nonpk
Variable Scope Global
Dynamic Variable
Permitted Values Boolean
Default Value ON
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

Galera Cluster requires primary keys on all tables. The node uses the primary key in replication to allow for the parallel
applying of transactions to a table. This parameter tells the node that when it encounters a row without a primary key,
it should create one for replication purposes. However, as a rule do not use tables without primary keys.

You can execute the following SHOW VARIABLES statement with a LIKE operator to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_certify_nonpk';

+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| wsrep_certify_nonpk | ON |
+---------------------+-------+

8.1. MySQL wsrep Options 241

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_cluster_address

This parameter sets the back-end schema, IP addresses, ports and options the node uses in connecting to the cluster.

Command-line Format --wsrep-cluster-address
System Variable wsrep_cluster_address
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

Galera Cluster uses this parameter to determine the IP addresses for the other nodes in the cluster, the back-end schema
to use and additional options it should use in connecting to and communicating with those nodes. Currently, the only
back-end schema supported for production is gcomm.

Below is the syntax for this the values of this parameter:

<backend schema>://<cluster address>[?option1=value1[&option2=value2]]

Here’s an example of how that might look:

wsrep_cluster_address="gcomm://192.168.0.1:4567?gmcast.listen_addr=0.0.0.0:5678"

Changing this variable while Galera is running will cause the node to close the connection to the current cluster, and
reconnect to the new address. Doing this at runtime may not be possible, though, for all SST methods. As of Galera
Cluster 23.2.2, it is possible to provide a comma-separated list of other nodes in the cluster as follows:

gcomm://node1:port1,node2:port2,...[?option1=value1&...]

Using the string gcomm:// without any address will cause the node to startup alone, thus initializing a new clus-
ter–that the other nodes can join to. Using --wsrep-new-cluster is the newer, preferred way.

Warning: Never use an empty gcomm:// string with the wsrep_cluster_address option in the configu-
ration file. If a node restarts, it will cause the node not to rejoin the cluster. Instead, it will initialize a new one-node
cluster and cause a Split Brain. To bootstrap a cluster, you should only pass the --wsrep-new-cluster string
at the command-line–instead of using --wsrep-cluster-address="gcomm://". For more information,
see Starting the Cluster.

You can execute the following SQL statement to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_cluster_address';

+-----------------------+---+
| Variable_name | Value |
+-----------------------+---+
| wsrep_cluster_address | gcomm://192.168.1.1,192.168.1.2,192.168.1.3 |
+-----------------------+---+

wsrep_cluster_name

This parameter defines the logical cluster name for the node.

242 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-cluster-name
System Variable wsrep_cluster_name
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value exmaple_cluster
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

This parameter allows you to define the logical name the node uses for the cluster. When a node attempts to connect
to a cluster, it checks the value of this parameter against that of the cluster. The connection is only made if the names
match. If they do not match, the connection fails. Because of this, the cluster name must be the same on all nodes.

You can execute the following SHOW VARIABLES statement with a LIKE operator to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_cluster_name';

+--------------------+-----------------+
| Variable_name | Value |
+--------------------+-----------------+
| wsrep_cluster_name | example_cluster |
+--------------------+-----------------+

wsrep_convert_lock_to_trx

This parameter is used to set whether the node converts LOCK/UNLOCK TABLES statements into BEGIN/COMMIT
statements.

Command-line Format --wsrep-convert-lock-to-trx
System Variable wsrep_convert_lock_to_trx
Variable Scope Global
Dynamic Variable
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21
Deprecated Version MySQL-wsrep: 8.0.19-26.3

This parameter determines how the node handles LOCK/UNLOCK TABLES statements, specifically whether or not
you want it to convert these statements into BEGIN/COMMIT statements. It tells the node to convert implicitly locking
sessions into transactions within the database server. By itself, this is not the same as support for locking sections, but
it does prevent the database from resulting in a logically inconsistent state.

This parameter may sometimes help to get old applications working in a multi-primary setup.

Note: Loading a large database dump with LOCK statements can result in abnormally large transactions and cause an
out-of-memory condition.

You can execute the following SHOW VARIABLES statement with a LIKE operator to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_convert_lock_to_trx';

+---------------------------+-------+

(continues on next page)

8.1. MySQL wsrep Options 243

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

| Variable_name | Value |
+---------------------------+-------+
| wsrep_convert_lock_to_trx | OFF |
+---------------------------+-------+

wsrep_data_home_dir

Use this parameter to set the directory the wsrep Provider uses for its files.

Command-line Format ???
System Variable wsrep_data_home_dir
Variable Scope Global
Dynamic Variable
Permitted Values Directory
Default Value /path/mysql_datadir
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

During operation, the wsrep Provider needs to save various files to disk that record its internal state. This parameter
defines the path to the directory that you want it to use. If not set, it defaults the MySQL datadir path.

You can execute the following SHOW VARIABLES statement with a LIKE operator to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_data_home_dir';

+---------------------+----------------+
| Variable_name | Value |
+---------------------+----------------+
| wsrep_data_home_dir | /var/lib/mysql |
+---------------------+----------------+

wsrep_dbug_option

You can set debug options to pass to the wsrep Provider with this parameter.

Command-line Format --wsrep-dbug-option
System Variable wsrep_dbug_option
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value
Initial Version MySQL-wsrep: 5.5.15-21.1, MariaDB: 5.5.21

You can execute the following SHOW VARIABLES statement with a LIKE operator to see how this variable is set, if
it is set:

SHOW VARIABLES LIKE 'wsrep_dbug_option';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+

(continues on next page)

244 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

| wsrep_dbug_option | |
+-------------------+-------+

wsrep_debug

This parameter enables additional debugging output for the database server error log.

Command-line Format --wsrep-debug
System Variable wsrep_debug
Variable Scope Global
Dynamic Variable
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

Under normal operation, error events are logged to an error log file for the database server. By default, the name of
this file is the server hostname with the .err extension. You can define a custom path using the log_error parameter.
When you enable wsrep_debug (page 245), the database server logs additional events surrounding these errors to help
in identifying and correcting problems.

DDL statements are also logged. See below for an example:

2024-09-06 14:37:57 13 [Note] WSREP: TOI Begin: CREATE SEQUENCE seq start with 1
→˓minvalue 1 maxvalue 1000000 increment by 0 cache 1000 nocycle ENGINE=InnoDB
2024-09-06 14:37:57 13 [Note] WSREP: enter_toi_local: enter(13,exec,local,success,0,
→˓toi: -1,nbo: -1)
2024-09-06 14:37:57 13 [Note] WSREP: poll_enter_toi: 3,0
2024-09-06 14:37:57 13 [Note] WSREP: enter_toi_local: leave(13,exec,toi,success,0,
→˓toi: 3,nbo: -1)
2024-09-06 14:37:57 13 [Note] WSREP: avoiding binlog rotate due to TO isolation: 1
2024-09-06 14:37:57 13 [Note] WSREP: TO END: 3: CREATE SEQUENCE seq start with 1
→˓minvalue 1 maxvalue 1000000 increment by 0 cache 1000 nocycle ENGINE=InnoDB

Warning: In addition to useful debugging information, the wsrep_debug parameter also causes the database
server to print authentication information (that is, passwords) to the error logs. Do not enable it in production
environments. This, however, does not concern MariaDB, as the “wsrep_thd_query()”, where the user query is
exposed, does not print all information when the “SQL_COMMAND” is “SET” (such as “SET PASSWORD”) or
“SQLCOM_CREATE_USER”, where “CREATE USER” is only logged.

See below for an example of wsrep_debug output:

2024-09-06 14:26:19 2 [Note] WSREP: open: enter(4,none,high priority,success,0,toi: -
→˓1,nbo: -1)
2024-09-06 14:26:19 2 [Note] WSREP: open: leave(4,idle,high priority,success,0,toi: -
→˓1,nbo: -1)
2024-09-06 14:26:19 2 [Note] WSREP: before_command: enter(4,idle,high priority,
→˓success,0,toi: -1,nbo: -1)
2024-09-06 14:26:19 4 [Note] WSREP: before_command: success(4,exec,high priority,
→˓success,0,toi: -1,nbo: -1)
2024-09-06 14:26:19 4 [Note] WSREP: Cluster table is empty, not recovering
→˓transactions

(continues on next page)

8.1. MySQL wsrep Options 245

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_log_error

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

2024-09-06 14:26:19 2 [Note] WSREP: after_command_before_result: enter(4,exec,high
→˓priority,success,0,toi: -1,nbo: -1)
2024-09-06 14:26:19 2 [Note] WSREP: after_command_before_result: leave(4,result,high
→˓priority,success,0,toi: -1,nbo: -1)
2024-09-06 14:26:19 2 [Note] WSREP: after_command_after_result_enter(4,result,high
→˓priority,success,0,toi: -1,nbo: -1)
2024-09-06 14:26:19 2 [Note] WSREP: after_command_after_result: leave(4,idle,high
→˓priority,success,0,toi: -1,nbo: -1)
2024-09-06 14:26:19 2 [Note] WSREP: close: enter(4,idle,high priority,success,0,toi: -
→˓1,nbo: -1)
2024-09-06 14:26:19 2 [Note] WSREP: close: leave(4,quit,high priority,success,0,toi: -
→˓1,nbo: -1)
2024-09-06 14:26:19 4 [Note] WSREP: cleanup: enter(4,quit,local,success,0,toi: -1,
→˓nbo: -1)
2024-09-06 14:26:19 4 [Note] WSREP: cleanup: leave(4,none,local,success,0,toi: -1,
→˓nbo: -1)

The wsrep_debug options are:

• SERVER - WSREP_DEBUG log writes from the source code will be added to the error log.

• TRANSACTION - Logging from wsrep-lib transactions will be added to the error log.

• STREAMING - Logging from streaming transactions in wsrep-lib will be added to the error log.

• CLIENT - Logging from wsrep-lib client state will be added to the error log.

See also evs.debug_log_mask (page 285).

You can execute the following SHOW VARIABLES statement with a LIKE operator to see if this variable is enabled:

SHOW VARIABLES LIKE 'wsrep_debug';

+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wsrep_debug | OFF |
+---------------+-------+

wsrep_desync

This parameter is used to set whether or not the node participates in Flow Control.

Command-line Format ???
System Variable wsrep_desync
Variable Scope Global
Dynamic Variable
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.5.33-23.7.6, MariaDB: 5.5.33

When a node receives more write-sets than it can apply, the transactions are placed in a received queue. In the event
that the node falls too far behind, it engages Flow Control. The node takes itself out of sync with the cluster and works
through the received queue until it reaches a more manageable size.

For more information on Flow Control and how to configure and manage it in a cluster, see Flow Control (page 25)
and Managing Flow Control (page 99).

246 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

When set to ON, this parameter disables Flow Control for the node. The node will continue to receive write-sets and fall
further behind the cluster. The cluster does not wait for desynced nodes to catch up, even if it reaches the fc_limit
value.

You can execute the following SHOW VARIABLES statement with a LIKE operator to see if this variable is enabled:

SHOW VARIABLES LIKE 'wsrep_desync';

+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wsrep_desync | OFF |
+---------------+-------+

wsrep_dirty_reads

This parameter defines whether the node accepts read queries when in a non-operational state.

Command-line Format --wsrep-dirty-reads
System Variable wsrep_dirty_reads
Variable Scope Global
Dynamic Variable Yes
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.6.29-25.14, MariaDB: 10.1.3

When a node loses its connection to the Primary Component, it enters a non-operational state. Given that it can’t
keep its data current while in this state, it rejects all queries with an ERROR: Unknown command message. This
parameter determines whether or not the node permits reads while in a non-operational state.

Note: Remember that by its nature, data reads from nodes in a non-operational state are stale. Current data in the
Primary Component remains inaccessible to these nodes until they rejoin the cluster.

When enabling this parameter, the node only permits reads. It still rejects any command that modifies or updates the
database. When in this state, the node allows USE, SELECT, LOCK TABLE and UNLOCK TABLES statements. It
does not allow DDL statements. It also rejects DML statements (that is, INSERT, DELETE and UPDATE).

You must set the wsrep_sync_wait (page 270) parameter to 0 when using this parameter, else it raises a deadlock error.

You can execute the following SHOW VARIABLES statement with a LIKE operator to see if this variable is enabled:

SHOW VARIABLES LIKE 'wsrep_dirty_reads';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| wsrep_dirty_reads | ON |
+-------------------+-------+

Note: This is a MySQL wsrep parameter. It was introduced in version 5.6.29.

8.1. MySQL wsrep Options 247

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_drupal_282555_workaround

This parameter enables workaround for a bug in MySQL InnoDB that affects Drupal installations.

Command-line Format --wsrep-drupal-282555-workaround
System Variable wsrep_drupal_282555_workaround
Variable Scope Global
Dynamic Variable
Permitted Values Boolean
Default Value ON
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

Drupal installations using MySQL are subject to a bug in InnoDB, tracked as MySQL Bug 41984 and Drupal Issue
282555. Specifically, inserting a DEFAULT value into an AUTO_INCREMENT column may return duplicate key
errors.

This parameter enables a workaround for the bug on Galera Cluster.

You can execute the following SHOW VARIABLES statement with a LIKE operator to see if this variable is enabled:

SHOW VARIABLES LIKE 'wsrep_drupal_28255_workaround';

+-------------------------------+-------+
| Variable_name | Value |
+-------------------------------+-------+
| wsrep_drupal_28255_workaround | ON |
+-------------------------------+-------+

wsrep_forced_binlog_format

This parameter defines the binary log format for all transactions.

Command-line Format --wsrep-forced-binlog-format
System Variable wsrep_forced_binlog_format
Variable Scope Global
Dynamic Variable
Permitted Values Enumeration
Default Value NONE
Valid Values ROW, STATEMENT, MIXED, NONE
Initial Version MySQL-wsrep: 5.5.17-22.3, MariaDB: 5.5.21

The node uses the format given by this parameter regardless of the client session variable binlog_format. Valid choices
for this parameter are: ROW, STATEMENT, and MIXED. Additionally, there is the special value NONE, which means
that there is no forced format in effect for the binary logs. When set to a value other than NONE, this parameter forces
all transactions to use a given binary log format.

This variable was introduced to support STATEMENT format replication during Rolling Schema Upgrade. In most
cases, however, ROW format replication is valid for asymmetric schema replication.

If you turn on wsrep_forced_binlog_format, it is effective only for DML operations, to avoid any possible
binlog corruption. In addition, since MySQL-wsrep 8.0.37-26.19, it is also deprecated, as binlog_format has
been deprecated upstream since MySQL 8.0.34. As the only possible logging format is ROW, it makes this option
redundant.

You can execute the following SHOW VARIABLES statement with a LIKE operator to see how this variable is set:

248 Chapter 8. Reference

https://bugs.mysql.com/bug.php?id=41984
https://drupal.org/node/282555
https://drupal.org/node/282555
https://dev.mysql.com/doc/refman/8.4/en/binary-log-setting.html

Galera Cluster Documentation, Releases 3.x and 4.x

SHOW VARIABLES LIKE 'wsrep_forced_binlog_format';

+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| wsrep_forced_binlog_format | NONE |
+----------------------------+-------+

wsrep_ignore_apply_errors

A bitmask defining whether errors are ignored, or reported back to the provider

• 0: No errors are skipped.

• 1: Ignore some DDL errors (DROP DATABASE, DROP TABLE, DROP INDEX, ALTER TABLE).

• 2: Skip DML errors (Only ignores DELETE errors).

• 4: Ignore all DDL errors.

For example, if you want to ignore some DDL errors (option 1) and skip DML errors (option 2), you would calculate
1+2=3, and use --wsrep-wsrep_ignore_apply_errors=3.

Command-line Format --wsrep-wsrep_ignore_apply_errors
System Variable wsrep_ignore_apply_errors
Variable Scope Global
Dynamic Variable Yes
Data Type Numeric
Default Value 7
Range 0 to 7
Initial Version Version 1.0

You can execute the following SHOW VARIABLES statement with a LIKE operator to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep-wsrep_ignore_apply_errors';

+---------------------------------+-------+
| Variable_name | Value |
+---------------------------------+-------+
| wsrep-wsrep_ignore_apply_errors | 7 |
+---------------------------------+-------+

wsrep_info_level

This parameter defines how to log INFO-level wsrep messages.

Command-line Format --wsrep_info_level
System Variable wsrep_info_level
Variable Scope Global
Dynamic Variable
Permitted Values Numeric
Default Value 0
Initial Version MySQL-wsrep: 8.0.34

8.1. MySQL wsrep Options 249

Galera Cluster Documentation, Releases 3.x and 4.x

INFO-level wsrep messages are logged with SYSTEM_LEVEL priority by default, as WSREP information level mes-
sages are crucial for troubleshooting replication issues. However, if you need to use INFORMATION_LEVEL logging,
you can use this variable to change the logging priority.

The options are:

• 0 Use SYSTEM_LEVEL logging.

• 3 Use INFORMATION_LEVEL logging.

You can execute the following SHOW VARIABLES statement to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_info_level';

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| wsrep_info_level | 0 |
+------------------+-------+

wsrep_load_data_splitting

This parameter defines whether the node splits large LOAD DATA commands into more manageable units.

Command-line Format --wsrep-load-data-splitting
System Variable wsrep_load_data_splitting
Variable Scope Global
Dynamic Variable
Permitted Values Boolean
Default Value ON
Initial Version MySQL-wsrep: 5.5.34-25.29, MariaDB: 5.5.32

When loading huge amounts of data creates problems for Galera Cluster, in that they eventually reach a size that is too
large for the node to rollback completely the operation in the event of a conflict and whatever gets committed stays
committed.

This parameter tells the node to split LOAD DATA commands into transactions of 10,000 rows or less, making the
data more manageable for the cluster. This deviates from the standard behavior for MySQL.

You can execute the following SHOW VARIABLES statement to see how this variable is set:

SHOW VARIABLES LIKE 'wsrep_load_data_splitting';

+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| wsrep_load_data_splitting | ON |
+---------------------------+-------+

wsrep_log_conflicts

This parameter defines whether the node logs additional information about conflicts.

250 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-log-conflicts
System Variable wsrep_log_conflicts
Variable Scope Global
Dynamic Variable No
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.5.28-23.7, MariaDB: 5.5.27

In Galera Cluster, the database server uses the standard logging features of MySQL, MariaDB and Percona XtraDB.
This parameter enables additional information for the logs pertaining to conflicts. You may find this useful
in troubleshooting replication problems. You can also log conflict information with the wsrep Provider option
cert.log_conflicts (page 283).

The additional information includes the table and schema where the conflict occurred, as well as the actual values for
the keys that produced the conflict.

You can execute the following SHOW VARIABLES statement to see if this feature is enabled:

SHOW VARIABLES LIKE 'wsrep_log_conflicts';

+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| wsrep_log_conflicts | OFF |
+---------------------+-------+

wsrep_max_ws_rows

With this parameter you can set the maximum number of rows the node allows in a write-set.

Command-line Format --wsrep-max-ws-rows
System Variable wsrep_max_ws_rows
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value 0
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

If set to a value greater than 0, this parameter sets the maximum number of rows that the node allows in a write-set.

You can execute the following SHOW VARIABLES statement to see the current value of this parameter:

SHOW VARIABLES LIKE 'wsrep_max_ws_rows';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| wsrep_max_ws_rows | 128 |
+-------------------+-------+

wsrep_max_ws_size

You can set the maximum size the node allows for write-sets with this parameter.

8.1. MySQL wsrep Options 251

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-max-ws-size
System Variable wsrep_max_ws_size
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value 2G
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

This parameter sets the maximum size that the node allows for a write-set. Currently, this value limits the supported
size of transactions and of LOAD DATA statements.

The maximum allowed write-set size is 2G. You can execute the following SHOW VARIABLES statement to see the
current value of this parameter:

SHOW VARIABLES LIKE 'wsrep_max_ws_size';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| wsrep_max_ws_size | 2G |
+-------------------+-------+

wsrep_mode

Extends node behaviour with provided values.

Command-line Format --wsrep_mode
System Variable wsrep_mode
Variable Scope Global
Dynamic Variable Yes
Permitted Values Set
Default Value See the information below.
Initial Version MySQL-wsrep: 5.7.32-25.24, 8.0.22-26.5, MariaDB: 10.6.0

The options for MySQL are:

• IGNORE_NATIVE_REPLICATION_FILTER_RULES - Ignore native replication filter rules for cluster
events. In other words, native asynchronous replication filtering options are honored when applying Galera
replication. These options are of format replicate_*, and specify if transactions for a table or a database
should be applied or not.

• IGNORE_CASCADING_FK_DELETE_MISSING_ROW_ERROR - Ignore missing row errors when applying a
cascading delete write set. This a workaround for https://bugs.mysql.com/bug.php?id=80821, and is possibly
obsolete in the upstream versions.

• APPLIER_IGNORE_MISSING_TABLE - MySQL has an anomaly to sometimes add an excessive tablemap
event in the binlog. This can happen in use cases related to multi-table updates and trigger definitions to a
third table, which is not effectively needed in applying of the replication events. With wsrep_mode set to
APPLIER_IGNORE_MISSING_TABLE, the replication applier will ignore the failure to open such a table,
which would not be used in the actual applying. This is the default value for MySQL.

• APPLIER_SKIP_FK_CHECKS_IN_IST - In normal operation, appliers must verify foreign key constraints
in multi-active topologies. Thus, appliers are configured to enable FK checking. However, during node joining,
in IST and latter catch up period, the node is still idle from local connections, and the only source for incoming

252 Chapter 8. Reference

https://bugs.mysql.com/bug.php?id=80821

Galera Cluster Documentation, Releases 3.x and 4.x

transactions is the cluster sending certified write sets for applying. IST happens with parallel applying, and there
is a possibility that a foreign key check causes lock conflicts between appliers accessing FK child and parent
tables. Also, the excessive FK checking will slow down IST process. When this mode is set, and the node is
processing IST or catch up, appliers will skip FK checking.

The options for MariaDB are:

• BINLOG_ROW_FORMAT_ONLY - Only ROW binlog format is supported.

• DISALLOW_LOCAL_GTID - Nodes can have GTIDs for local transactions in a number of scenarios. If DISALLOW_LOCAL_GTID is set, these operations produce error ERROR HY000: Galera replication not supported. Scenarios include:

– A DDL statement is executed with wsrep_OSU_method=RSU set.

– A DML statement writes to a non-InnoDB table.

– A DML statement writes to an InnoDB table with wsrep_on=OFF set.

• REPLICATE_ARIA - Together with wsrep_mode=REPLICATE_MYISAM, this parameter enables Galera
to replicate both DDL and DML for ARIA and/or MyISAM using TOI. This option requires a primary key
for the replicated table. To use this mode, set on REQUIRED_PRIMARY_KEY,REPLICATE_MYISAM,
REPLICATE_ARIA.

• REPLICATE_MYISAM - Together with wsrep_mode=REPLICATE_ARIA, this parameter enables Galera
to replicate both DDL and DML for ARIA and/or MyISAM using TOI. This option requires a primary key
for the replicated table. To use this mode, set on REQUIRED_PRIMARY_KEY,REPLICATE_MYISAM,
REPLICATE_ARIA.

• REQUIRED_PRIMARY_KEY - The table must have a primary key defined.

• STRICT_REPLICATION - The same as the old wsrep_strict_ddl setting (which was deprecated in 10.6,
and removed in 10.7).

• BF_ABORT_MARIABACKUP - With this option, backup execution can be aborted if DDL statements take place
during the backup execution. Note that node desync and pause operations are still needed, if the node is operating
as an SST donor.

• (Empty) - Giving no value does not change the node behavior. This is the default value for MariaDB.

The options for Percona XtraDB Cluster (PXC) are:

• IGNORE_NATIVE_REPLICATION_FILTER_RULES - Ignore native replication filter rules for cluster
events.

• (Empty) - Giving no value does not change the node behavior. This is the default value for Percona XtraDB
Cluster (PXC).

SET GLOBAL wsrep_mode = IGNORE_NATIVE_REPLICATION_FILTER_RULES;

SHOW VARIABLES LIKE 'wsrep_mode';

+---------------+--+
| Variable_name | Value |
+---------------+--+
| wsrep_mode | IGNORE_NATIVE_REPLICATION_FILTER_RULES |
+---------------+--+

wsrep_node_address

This parameter is used to note the IP address and port of the node.

8.1. MySQL wsrep Options 253

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-node-address
System Variable wsrep_node_address
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value Server IP Address, Port 4567
Initial Version MySQL-wsrep: 5.5.20-23.4, MariaDB: 5.5.21

The node passes its IP address and port number to the Galera Replication Plugin, where it is used as the base address
in cluster communications. By default, the node pulls the address of the first network interface and uses the default
port for Galera Cluster. Typically, this is the address of eth0 or enp2s0 on port 4567.

While the default behavior is often sufficient, there are situations in which this auto-guessing function produces unre-
liable results. Some common reasons are the following:

• Servers with multiple network interfaces;

• Servers that run multiple nodes;

• Network Address Translation (NAT);

• Clusters with nodes in more than one region;

• Container deployments, such as with Docker and jails; and

• Cloud deployments, such as with Amazon EC2 and OpenStack.

In these scenarios, since auto-guess of the IP address does not produce the correct result, you will need to provide an
explicit value for this parameter.

Note: In addition to defining the node address and port, this parameter also provides the default values for the
wsrep_sst_receive_address (page 268) parameter and the ist.recv_addr (page 300) option.

In some cases, you may need to provide a different value. For example, Galera Cluster running on Amazon EC2
requires that you use the global DNS name instead of the local IP address.

You can execute the SHOW VARIABLES statement as shown below to get the current value of this parameter:

SHOW VARIABLES LIKE 'wsrep_node_address';

+--------------------+-------------+
| Variable_name | Value |
+--------------------+-------------+
| wsrep_node_address | 192.168.1.1 |
+--------------------+-------------+

wsrep_node_incoming_address

This parameter is used to provide the IP address and port from which the node should expect client connections.

254 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-node-incoming-address
System Variable wsrep_node_incoming_address
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

This parameter defines the IP address and port number at which the node should expect to receive client connections.
It is intended for integration with load balancers. For now, it is otherwise unused by the node.

You can execute the SHOW VARIABLES statement with the LIKE operator as shown below to get the IP address and
port setting of this parameter:

SHOW VARIABLES LIKE 'wsrep_node_incoming_address';

+-----------------------------+------------------+
| Variable_name | Value |
+-----------------------------+------------------+
| wsrep_node_incoming_address | 192.168.1.1:3306 |
+-----------------------------+------------------+

wsrep_node_name

You can set the logical name that the node uses for itself with this parameter.

Command-line Format --wsrep-node-name
System Variable wsrep_node_name
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value Server Hostname
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

This parameter defines the logical name that the node uses when referring to itself in logs and in the cluster. It’s for
convenience, to help you in identifying nodes in the cluster by means other than the node address.

By default, the node uses the server hostname. In some situations, you may need explicitly to set it. You would do
this when using container deployments with Docker or FreeBSD jails, where the node uses the name of the container
rather than the hostname.

You can execute the SHOW VARIABLES statement with the LIKE operator as shown below to get the node name:

SHOW VARIABLES LIKE 'wsrep_node_name';

+-----------------+-------------+
| Variable_name | Value |
+-----------------+-------------+
| wsrep_node_name | GaleraNode1 |
+-----------------+-------------+

8.1. MySQL wsrep Options 255

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_notify_cmd

Defines the command the node runs whenever cluster membership or the state of the node changes.

Command-line Format --wsrep-notify-cmd
System Variable wsrep_notify_cmd
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

Whenever the node registers changes in cluster membership or its own state, this parameter allows you to send infor-
mation about that change to an external script defined by the value. You can use this to reconfigure load balancers,
raise alerts and so on, in response to node and cluster activity.

Warning: The node will block and wait until the script completes and returns before it can proceed. If the script
performs any potentially blocking or long-running operations, such as network communication, you may wish
initiate such operations in the background and have the script return immediately.

For an example script that updates two tables on the local node, with changes taking place at the cluster level, see the
Notification Command (page 206).

When the node calls the command, it passes one or more arguments that you can use in configuring your custom
notification script and how it responds to the change. Below are these options and explanations of each:

256 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Option Purpose Possible Values
--status <status
str>

The status of this node. Undefined The node has just started up and is not
connected to any Primary Component.
Joiner The node is connected to a primary component
and now is receiving state snapshot.
Donor The node is connected to primary component
and now is sending state snapshot.
Joined The node has a complete state and now is
catching up with the cluster.
Synced The node has synchronized itself with the
cluster.
Error(<error code if available>) The
node is in an error state.

--uuid <state
UUID>

The cluster state UUID.

--primary <yes/
no>

Whether the current clus-
ter component is primary
or not.

--members <list> A comma-separated list
of the component member
UUIDs.

<node UUID>; A unique node ID. The wsrep
Provider automatically assigns this ID for each node.

<node name>; The node name as it is set in the
wsrep_node_name option.
<incoming address>; The address
for client connections as it is set in the
wsrep_node_incoming_address option.

--index The index of this node in
the node list.

SHOW VARIABLES LIKE 'wsrep_notify_cmd';

+------------------+--------------------------+
| Variable_name | Value |
+------------------+--------------------------+
| wsrep_notify_cmd | /usr/bin/wsrep_notify.sh |
+------------------+--------------------------+

wsrep_on

Defines whether replication takes place for updates from the current session.

Command-line Format ???
System Variable wsrep_on
Variable Scope Session
Dynamic Variable
Permitted Values Boolean
Default Value ON
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

This parameter defines whether or not updates made in the current session replicate to the cluster. It does not cause
the node to leave the cluster and the node continues to communicate with other nodes. Additionally, it is a session

8.1. MySQL wsrep Options 257

Galera Cluster Documentation, Releases 3.x and 4.x

variable. Defining it through the SET GLOBAL syntax also affects future sessions.

SHOW VARIABLES LIKE 'wsrep_on';

+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wsrep_on | ON |
+---------------+-------+

wsrep_OSU_method

Defines the Online Schema Upgrade method the node uses to replicate DDL statements.

Command-line
Format

--wsrep-OSU-method

System Variable wsrep_OSU_method
Variable Scope Global, Session
Dynamic Vari-
able

Yes

Permitted Values Enumeration
Default Value TOI
Valid Values TOI, RSU, NBO
Initial Version MySQL-wsrep: 5.5.17-22.3, MariaDB: 5.5.21
Initial Version,
NBO

MariaDB Enterprise Server Version 10.5, MySQL-wsrep 8.0.28-26.10 Enterprise Edition, Per-
cona XtraDB Cluster 8.0.25-15.1

DDL statements are non-transactional and as such do not replicate through write-sets. There are two methods available
that determine how the node handles replicating these statements:

• TOI In the Total Order Isolation method, the cluster runs the DDL statement on all nodes in the same total order
sequence, blocking other transactions from committing while the DDL is in progress.

• RSU In the Rolling Schema Upgrade method, the node runs the DDL statements locally, thus blocking only the
one node where the statement was made. While processing the DDL statement, the node is not replicating and
may be unable to process replication events due to a table lock. Once the DDL operation is complete, the node
catches up and syncs with the cluster to become fully operational again. The DDL statement or its effects are
not replicated; the user is responsible for manually executing this statement on each node in the cluster.

• NBO In the Non-Blocking Operations method, the cluster runs the DDL statement on all nodes in the same total
order sequence, blocking other transactions from committing while the DDL is in progress. In comparison with
TOI, the NBO method has more efficient locking for several operations, as the NBO method issues metadata
locks on all nodes at the start of the DDL operation, to ensure consistency. This prevents the TOI issue of
long-running DDL statements, which block cluster updates.

For more information on DDL statements and OSU methods, see Schema Upgrades (page 85).

SHOW VARIABLES LIKE 'wsrep_OSU_method';

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| wsrep_OSU_method | TOI |
+------------------+-------+

258 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_preordered

Defines whether the node uses transparent handling of preordered replication events.

Command-line Format --wsrep-preordered
System Variable wsrep_preordered
Variable Scope Global
Dynamic Variable Yes
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.6.21-25.9
Deprecated Version MySQL-wsrep: 8.0.19-26.3, MariaDB: 10.1.1

This parameter enables transparent handling of preordered replication events, such as replication events arriving from
traditional asynchronous replication. When this option is ON, such events will be applied locally first before being
replicated to the other nodes of the cluster. This could increase the rate at which they can be processed which would
be otherwise limited by the latency between the nodes in the cluster.

Preordered events should not interfere with events that originate on the local node. Therefore, you should not run local
update queries on a table that is also being updated through asynchronous replication.

SHOW VARIABLES LIKE 'wsrep_preordered';

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| wsrep_preordered | OFF |
+------------------+-------+

wsrep_provider

Defines the path to the Galera Replication Plugin.

Command-line Format --wsrep-provider
System Variable wsrep_provider
Variable Scope Global
Dynamic Variable
Permitted Values File
Default Value
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

When the node starts, it needs to load the wsrep Provider in order to enable replication functions. The path defined
in this parameter tells it what file it needs to load and where to find it. In the event that you do not define this path
or you give it an invalid value, the node bypasses all calls to the wsrep Provider and behaves as a standard standalone
instance of MySQL.

SHOW VARIABLES LIKE 'wsrep_provider';

+----------------+----------------------------------+
| Variable_name | Value |
+----------------+----------------------------------+
| wsrep_provider | /usr/lib/galera/libgalera_smm.so |
+----------------+----------------------------------+

8.1. MySQL wsrep Options 259

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_provider_options

Defines optional settings the node passes to the wsrep Provider.

Command-line Format --wsrep-provider-options
System Variable wsrep_provider_options
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

When the node loads the wsrep Provider, there are several configuration options available that affect how it handles
certain events. These allow you to fine tune how it handles various situations.

For example, you can use gcache.size (page 293) to define how large a write-set cache the node keeps or manage group
communications timeouts.

Note: All wsrep_provider_options settings need to be specified on a single line. In case of multiple instances
of wsrep_provider_options, only the last one is used.

For more information on the wsrep Provider options, see Galera Parameters (page 275).

SHOW VARIABLES LIKE 'wsrep_provider_options';

+------------------------+---+
| Variable_name | Value |
+------------------------+---+
| wsrep_provider_options | ... evs.user_send_window=2,gcache.size=128Mb |
| | evs.auto_evict=0,debug=OFF, evs.version=0 ... |
+------------------------+---+

wsrep_recover

If ON, when the server starts, the server will recover the sequence number of the most recent write set applied by
Galera, and it will be output to stderr, which is usually redirected to the error log. At that point, the server will exit.
This sequence number can be provided to the wsrep_start_position system variable.

Command-line Format --wsrep-recover
System Variable wsrep_recover
Variable Scope Global
Dynamic Variable No
Permitted Values 0 | 1
Default Value OFF
Initial Version MySQL-wsrep: 5.5.23-23.5, MariaDB: 5.5.21

See also Restarting the Cluster and wsrep_recover Script.

SHOW VARIABLES LIKE 'wsrep_recover';

+------------------------+---+

(continues on next page)

260 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

| Variable_name | Value |
+------------------------+---+
| wsrep_recover | OFF |
+------------------------+---+

wsrep_reject_queries

Defines whether the node rejects client queries while participating in the cluster.

Command-line Format
System Variable wsrep_reject_queries
Variable Scope Global
Dynamic Variable Yes
Permitted Values Array
Default Value NONE
Valid Values NONE, ALL, ALL_KILL
Initial Version MySQL-wsrep: 5.6.29-25.14, MariaDB: 10.1.32

When in use, this parameter causes the node to reject queries from client connections. The node continues to participate
in the cluster and apply write-sets, but client queries generate Unknown command errors. For instance,

SELECT * FROM my_table;

Error 1047: Unknown command

You may find this parameter useful in certain maintenance situations. In enabling it, you can also decide whether or
not the node maintains or kills any current client connections.

• NONE The node disables this feature.

• ALL The node enables this feature. It rejects all queries, but maintains any existing client connections.

• ALL_KILL The node enables this feature. It rejects all queries and kills existing client connections without
waiting, including the current connection.

SHOW VARIABLES LIKE 'wsrep_reject_queries';

+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| wsrep_reject_queries | NONE |
+----------------------+-------+

Note: This is a MySQL wsrep parameter. It was introduced in version 5.6.29.

wsrep_restart_replica

Defines whether the replica restarts when the node joins the cluster.

8.1. MySQL wsrep Options 261

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-restart-replica
System Variable wsrep_restart_replica
Variable Scope Global
Dynamic Variable Yes
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 8.0.26-26.8

Enabling this parameter tells the node to restart the replica when it joins the cluster.

SHOW VARIABLES LIKE 'wsrep_restart_replica';

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| wsrep_restart_replica | OFF |
+-----------------------+-------+

wsrep_restart_slave

Deprecated as of Galera Cluster 4.10/MySQL-wsrep 8.0.26-26.8 in favor of wsrep_restart_replica (page 261).

wsrep_retry_autocommit

Defines the number of retries the node attempts when an autocommit query fails.

Command-line Format --wsrep-retry-autocommit
System Variable wsrep_retry_autocommit
Variable Scope Global
Dynamic Variable
Permitted Values Integer
Default Value 1
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

When an autocommit query fails the certification test due to a cluster-wide conflict, the node can retry it without
returning an error to the client. This parameter defines how many times the node retries the query. It is analogous to
rescheduling an autocommit query should it go into deadlock with other transactions in the database lock manager.

SHOW VARIABLES LIKE 'wsrep_retry_autocommit';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| wsrep_retry_autocommit | 1 |
+------------------------+-------+

wsrep_applier_FK_checks

Defines whether the node performs foreign key checking for applier threads.

262 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-applier-FK-checks
System Variable wsrep_applier_FK_checks
Variable Scope Global
Dynamic Variable Yes
Permitted Values Boolean
Default Value ON
Initial Version MySQL-wsrep: 8.0.26-26.8

This parameter enables foreign key checking on applier threads.

SHOW VARIABLES LIKE 'wsrep_applier_FK_checks';

+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| wsrep_applier_FK_checks | ON |
+-------------------------+-------+

wsrep_slave_FK_checks

Command-line Format --wsrep-slave-FK-checks
System Variable wsrep_slave_FK_checks
Variable Scope Global
Dynamic Variable Yes
Permitted Values Boolean
Default Value ON
Initial Version MySQL-wsrep: 5.5.42-25.11, MariaDB: 10.0.12
Deprecated Version MySQL-wsrep: 8.0.26-26.8

Deprecated as of Galera Cluster 4.10/MySQL-wsrep 8.0.26-26.8 in favor of wsrep_applier_FK_checks (page 262).

wsrep_applier_threads

Defines the number of threads to use in applying of write-sets.

Command-line Format --wsrep-applier-threads
System Variable wsrep_applier_threads
Variable Scope Global
Dynamic Variable Yes
Permitted Values Integer
Default Value 1
Initial Version MySQL-wsrep: 8.0.26-26.8

This parameter allows you to define how many threads the node uses when applying write-sets. Performance on
the underlying system and hardware, the size of the database, the number of client connections, and the load your
application puts on the server all factor in the need for threading, but not in a way that makes the scale of that need
easy to predict. Because of this, there is no strict formula to determine how many applier threads your node actually
needs.

Instead of concrete recommendations, there are some general guidelines that you can use as a starting point in finding
the value that works best for your system:

8.1. MySQL wsrep Options 263

Galera Cluster Documentation, Releases 3.x and 4.x

• It is rarely beneficial to use a value that is less than twice the number of CPU cores on your system.

• Similarly, it is rarely beneficial to use a value that is more than one quarter the total number of client connections
to the node. While it is difficult to predict the number of client connections, being off by as much as 50% over
or under is unlikely to make a difference.

• From the perspective of resource utilization, it’s recommended that you keep to the lower end of applier threads.

SHOW VARIABLES LIKE 'wsrep_applier_threads';

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| wsrep_applier_threads | 1 |
+-----------------------+-------+

wsrep_slave_threads

Command-line Format --wsrep-slave-threads
System Variable wsrep_slave_threads
Variable Scope Global
Dynamic Variable
Permitted Values Integer
Default Value 1
Initial Version MySQL-wsrep: 5.1.58-25.11, MariaDB: 5.5.21
Deprecated Version MySQL-wsrep: 8.0.26-26.8

Deprecated as of MySQL-wsrep 8.0.26-26.8 in favor of wsrep_applier_threads (page 263). See also Setting Parallel
Replica Threads.

wsrep_applier_UK_checks

Defines whether the node performs unique key checking on applier threads.

Command-line Format --wsrep-applier-UK-checks
System Variable wsrep_applier_UK_checks
Variable Scope Global
Dynamic Variable Yes
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 8.0.26-26.8

This parameter enables unique key checking on applier threads.

SHOW VARIABLES LIKE 'wsrep_applier_UK_checks';

+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| wsrep_applier_UK_checks | OFF |
+-------------------------+-------+

264 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_slave_UK_checks

Command-line Format --wsrep-slave-UK-checks
System Variable wsrep_slave_UK_checks
Variable Scope Global
Dynamic Variable Yes
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.5.42-25.11, MariaDB: 5.5.21
Deprecated Version MySQL-wsrep: 8.0.26-26.8

Deprecated as of MySQL-wsrep 8.0.26-26.8 in favor of wsrep_applier_UK_checks (page 264).

wsrep_sst_auth

Defines the authentication information to use in State Snapshot Transfer.

Command-line Format --wsrep-sst-auth
System Variable wsrep_sst_auth
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

When the node attempts a state snapshot transfer using the Logical State Transfer Method, the transfer script uses
a client connection to the database server in order to obtain the data it needs to send. This parameter provides the
authentication information, (that is, the username and password), that the script uses to access the database servers of
both sending and receiving nodes.

Note: Galera Cluster only uses this parameter for State Snapshot Transfers that use the Logical transfer method.
Currently, the only method to use the Logical transfer method is mysqldump. For all other methods, the node does
not need this parameter.

Format this value to the pattern: username:password.

SHOW VARIABLES LIKE 'wsrep_sst_auth'

+----------------+---------------------------+
| Variable_name | Value |
+----------------+---------------------------+
| wsrep_sst_auth | wsrep_sst_user:mypassword |
+----------------+---------------------------+

wsrep_sst_donor

Defines the name of the node that this node uses as a donor in state transfers.

8.1. MySQL wsrep Options 265

Galera Cluster Documentation, Releases 3.x and 4.x

Command-line Format --wsrep-sst-donor
System Variable wsrep_sst_donor
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

When the node requires a state transfer from the cluster, it looks for the most appropriate one available. The group
communications module monitors the node state for the purposes of Flow Control, state transfers and Quorum calcu-
lations. The node can be a donor if it is in the SYNCED state. The first node in the SYNCED state in the index becomes
the donor and is made unavailable for requests while serving as such.

If there are no free SYNCED nodes at the moment, the joining node reports in the logs:

Requesting state transfer failed: -11(Resource temporarily unavailable).
Will keep retrying every 1 second(s)

It continues retrying the state transfer request until it succeeds. When the state transfer request does succeed, the node
makes the following entry in the logs:

Node 0 (XXX) requested state transfer from '*any*'. Selected 1 (XXX) as donor.

Using this parameter, you can tell the node which cluster node or nodes it should use instead for state transfers. The
names used in this parameter must match the names given with wsrep_node_name (page 255) on the donor nodes. The
setting affects both Incremental State Transfers (IST) and Snapshot State Transfers (SST).

If the list contains a trailing comma, the remaining nodes in the cluster will also be considered if the nodes from the
list are not available.

SHOW VARIABLES LIKE 'wsrep_sst_donor';

+-----------------+--------------------------------+
| Variable_name | Value |
+-----------------+--------------------------------+
| wsrep_sst_donor | my_donor_node1,my_donor_node2, |
+-----------------+--------------------------------+

wsrep_sst_donor_rejects_queries

Defines whether the node rejects blocking client sessions on a node when it is serving as a donor in a blocking state
transfer method, such as mysqldump and rsync.

Command-line Format --wsrep-sst-donor-rejects-queries
System Variable wsrep_sst_donor_rejects_queries
Variable Scope Global
Dynamic Variable
Permitted Values Boolean
Default Value OFF
Initial Version MySQL-wsrep: 5.5.28-23.7, MariaDB: 5.5.28

This parameter determines whether the node rejects blocking client sessions while it is sending state transfers using
methods that block it as the donor. In these situations, all queries return the error ER_UNKNOWN_COM_ERROR, that
is they respond with Unknown command, just like the joining node does.

266 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Given that a State Snapshot Transfer is scriptable, there is no way to tell whether the requested method is blocking
or not. You may also want to avoid querying the donor even with non-blocking state transfers. As a result, when
this parameter is enabled the Donor Node rejects queries regardless the state transfer and even if the initial request
concerned a blocking-only transfer, (meaning, it also rejects during xtrabackup).

Warning: The mysqldump state transfer method does not work with the
wsrep_sst_donor_rejects_queries parameter, given that mysqldump runs queries on the donor
and there is no way to differentiate its session from the regular client session.

SHOW VARIABLES LIKE 'wsrep_sst_donor_rejects_queries';

+---------------------------------+-------+
| Variable_name | Value |
+---------------------------------+-------+
| wsrep_sst_donor_rejects_queries | OFF |
+---------------------------------+-------+

wsrep_sst_method

Defines the method or script the node uses in a State Snapshot Transfer.

Command-line Format --wsrep-sst-method
System Variable wsrep_sst_method
Variable Scope Global
Dynamic Variable
Permitted Values String
Default Value rsync
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

When the node makes a state transfer request it calls on an external shell script to establish a connection a with the
donor node and transfer the database state onto the local database server. This parameter allows you to define what
script the node uses in requesting state transfers.

Galera Cluster ships with a number of default scripts that the node can use in state snapshot transfers. The supported
methods are:

• mysqldump This is slow, except for small data-sets, but is the most tested option.

• rsync This option is much faster than mysqldump on large data-sets.

Note: You can only use rsync when anode is starting. You cannot use it with a running InnoDB storage
engine.

• rsync_wan This option is almost the same as rsync, but uses the delta-xfer algorithm to minimize
network traffic.

• mariabackup This option uses the Mariabackup utility for performing SSTs. See mariabackup-options.

• xtrabackup This option is a fast and practically non-blocking state transfer method based on the Percona
xtrabackup tool. If you want to use it, the following settings must be present in the my.cnf configuration
file on all nodes:

8.1. MySQL wsrep Options 267

Galera Cluster Documentation, Releases 3.x and 4.x

[mysqld]
wsrep_sst_auth=YOUR_SST_USER:YOUR_SST_PASSWORD
wsrep_sst_method=xtrabackup
datadir=/path/to/datadir

[client]
socket=/path/to/socket

In addition to the default scripts provided and supported by Galera Cluster, you can also define your own custom state
transfer script. The naming convention that the node expects is for the value of this parameter to match wsrep_%.sh.
For instance, giving the node a transfer method of MyCustomSST causes it to look for wsrep_MyCustomSST.sh
in /usr/bin.

Bear in mind, the cluster uses the same script to send and receive state transfers. If you want to use a custom state
transfer script, you need to place it on every node in the cluster.

For more information on scripting state snapshot transfers, see Scriptable State Snapshot Transfers (page 77).

SHOW VARIABLES LIKE 'wsrep_sst_method';

+------------------+-----------+
| Variable_name | Value |
+------------------+-----------+
| wsrep_sst_method | mysqldump |
+------------------+-----------+

wsrep_sst_receive_address

Defines the address from which the node expects to receive state transfers.

Command-line Format --wsrep-sst-receive-address
System Variable wsrep_sst_receive_address
Variable Scope Global
Dynamic Variable Yes
Permitted Values String
Default Value wsrep_node_address (page 253)
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

This parameter defines the address from which the node expects to receive state transfers. It is dependent on the State
Snapshot Transfer method the node uses.

For example, mysqldump uses the address and port on which the node listens, which by default is set to the value of
wsrep_node_address (page 253).

Note: Check that your firewall allows connections to this address from other cluster nodes.

SHOW VARIABLES LIKE 'wsrep_sst_receive_address';

+---------------------------+-------------+
| Variable_name | Value |
+---------------------------+-------------+
| wsrep_sst_receive_address | 192.168.1.1 |
+---------------------------+-------------+

268 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_start_position

Defines the node start position.

Command-line
Format

--wsrep-start-position

System Variable wsrep_start_position
Variable Scope Global
Dynamic Vari-
able
Permitted Values String
Default Value 00000000-0000-0000-0000-000000000000:-1/0/0/

00000000-0000-0000-0000-000000000000
Initial Version MySQL-wsrep: 5.1.58-21.1, MariaDB: 5.5.21

This parameter defines the node start position. It contains the wsrep GTID position, local seqno for asynchronous
replication, server ID and server UUID all in one, slash-separated argument. It exists for the sole purpose of notifying
the joining node of the completion of a state transfer.

For more information on scripting state snapshot transfers, see Scriptable State Snapshot Transfers (page 77).

SHOW VARIABLES LIKE 'wsrep_start_position';

+----------------------+--
→˓--------------------+
| Variable_name | Value
→˓ |
+----------------------+--
→˓--------------------+
| wsrep_start_position | 00000000-0000-0000-0000-000000000000:-1/0/0/00000000-0000-
→˓0000-0000-000000000000 |
+----------------------+--
→˓--------------------+

wsrep_status_file

Defines the file name for node status output.

Command-line Format --wsrep-status-file
System Variable wsrep_status_file
Variable Scope Global
Dynamic Variable No
Permitted Values String
Default Value
Initial Version MySQL-wsrep 8.0.26-26.8

If defined, the file will contain JSON formatted output of node status. The purpose of the file is to provide a machine
readable view of the current node status which is available all the time after the node is started.

The contents of the file are subject to change.

SHOW VARIABLES LIKE 'wsrep_status_file';

(continues on next page)

8.1. MySQL wsrep Options 269

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

--------------------+-------------------+
| Variable_name | Value |
+-------------------+-------------------+
| wsrep_status_file | wsrep-status.json |
+-------------------+-------------------+

wsrep_sync_server_uuid

Sets the node to use the server UUID received from the donor node.

Command-line Format --wsrep_sync_server_uuid
System Variable wsrep_sync_server_uuid
Variable Scope Global
Dynamic Variable Yes
Permitted Values String
Default Value 0
Initial Version MySQL-wsrep 8.0.26-26.8

Unless this variable is set, the wsrep nodes generate individual server UUIDs, which are used on binlog events, such
as rolling schema upgrades, that are not replicated through wsrep. This makes individual node histories incomparable
and complicates switching asynchronous replica PRIMARY between the nodes in the cluster.

When set, this variable forces the nodes to use the same server UUID (generated on the seed node) to binlog events that
are not replicated through wsrep. This makes the histories comparable, provided that the user executes such operations
in agreed order on all the nodes..

SHOW VARIABLES LIKE 'wsrep_sync_server_uuid';

--------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| wsrep_sync_server_uuid | 1 |
+-------------------------+-------+

wsrep_sync_wait

Defines whether the node enforces strict cluster-wide causality checks.

Command-line Format --wsrep-sync-wait
System Variable wsrep_sync_wait
Variable Scope Session
Dynamic Variable Yes
Permitted Values Bitmask
Default Value 0
Initial Version MySQL-wsrep: 5.5.42-25.12, MariaDB: 10.0.13

When you enable this parameter, the node triggers causality checks in response to certain types of queries. During the
check, the node blocks new queries while the database server catches up with all updates made in the cluster to the
point where the check was begun. Once it reaches this point, the node executes the original query.

270 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Note: Causality checks of any type can result in increased latency.

This value of this parameter is a bitmask, which determines the type of check you want the node to run.

Bitmask Checks
0 Disabled.
1 Checks on READ statements, including SELECT, and BEGIN / START TRANSACTION. Checks on

SHOW (up to versions 5.5.54, 5.6.35, 5.7.17)
2 Checks made on UPDATE and DELETE statements.
3 Checks made on READ, UPDATE and DELETE statements.
4 Checks made on INSERT and REPLACE statements.
5 Checks made on READ, INSERT and REPLACE statements.
6 Checks made on UPDATE, DELETE, INSERT and REPLACE statements.
7 Checks made on READ,‘‘UPDATE‘‘, DELETE, INSERT and REPLACE statements.
8 Checks made on SHOW statements.
9 Checks made on READ and SHOW statements.
10 Checks made on UPDATE, DELETE and SHOW statements.
11 Checks made on READ, UPDATE, DELETE and SHOW statements.
12 Checks made on INSERT, REPLACE, and SHOW statements.
13 Checks made on READ, INSERT, REPLACE, and SHOW statements.
14 Checks made on UPDATE, DELETE, INSERT, REPLACE, and SHOW statements.
15 Checks made on READ, UPDATE, DELETE, INSERT, REPLACE, and SHOW statements.

For example, say that you have a web application. At one point in its run, you need it to perform a critical read. That
is, you want the application to access the database server and run a SELECT query that must return the most up to date
information possible.

SET SESSION wsrep_sync_wait=1;
SELECT * FROM example WHERE field = "value";
SET SESSION wsrep_sync_wait=0

In the example, the application first runs a SET command to enable wsrep_sync_wait (page 270) for READ statements,
then it makes a SELECT query. Rather than running the query, the node initiates a causality check, blocking incoming
queries while it catches up with the cluster. When the node finishes applying the new transaction, it executes the
SELECT query and returns the results to the application. The application, having finished the critical read, disables
wsrep_sync_wait (page 270), returning the node to normal operation.

Note: Setting wsrep_sync_wait (page 270) to 1 is the same as wsrep_causal_reads (page 240) to ON. This deprecates
wsrep_causal_reads (page 240).

SHOW VARIABLES LIKE 'wsrep_sync_wait';

+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| wsrep_sync_wait | 0 |
+-----------------+-------+

8.1. MySQL wsrep Options 271

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_trx_fragment_size

Defines the number of replication units needed to generate a new fragment in Streaming Replication.

Command-line Format --wsrep-trx-fragment-size
System Variable wsrep_trx_fragment_size
Variable Scope Session
Dynamic Variable Yes
Permitted Values Integer
Default Value 0
Initial Version MySQL-wsrep: 8.0.19-26.3, MariaDB: 10.4.2

In Streaming Replication, the node breaks transactions down into fragments, then replicates and certifies them while
the transaction is in progress. Once certified, a fragment can no longer be aborted due to conflicting transactions. This
parameter determines the number of replication units to include in a fragment. To define what these units represent,
use wsrep_trx_fragment_unit (page 272). A value of 0 indicates that streaming replication will not be used.

SHOW VARIABLES LIKE 'wsrep_trx_fragment_size';

+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| wsrep_trx_fragment_size | 5 |
+-------------------------+-------+

wsrep_trx_fragment_unit

Defines the replication unit type to use in Streaming Replication.

Command-line Format --wsrep-trx-fragment-unit
System Variable wsrep_trx_fragment_unit
Variable Scope Session
Dynamic Variable Yes
Permitted Values String
Default Value bytes
Valid Values bytes, rows, statements
Initial Version MySQL-wsrep: 8.0.19-26.3, MariaDB: 10.4.2

In Streaming Replication, the node breaks transactions down into fragments, then replicates and certifies them while
the transaction is in progress. Once certified, a fragment can no longer be aborted due to conflicting transactions. This
parameter determines the unit to use in determining the size of the fragment. To define the number of replication units
to use in the fragment, use wsrep_trx_fragment_size (page 271).

Supported replication units are:

• bytes: Refers to the fragment size in bytes.

• rows: Refers to the number of rows updated in the fragment.

• statements: Refers to the number of SQL statements in the fragment.

SHOW VARIABLES LIKE 'wsrep_trx_fragment_unit';

+-------------------------+--------+

(continues on next page)

272 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

| Variable_name | Value |
+-------------------------+--------+
| wsrep_trx_fragment_unit | bytes |
+-------------------------+--------+

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• repl.causal_read_timeout (page 306)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

8.2 Galera Functions

Starting with version 4 of Galera Cluster, there are several Galera functions available. At this point, the Galera
functions related to Global Transaction ID (GTID). They return a GTID or have effect on transactions related to a
GTID.

Function Arguments Initial Version
WSREP_LAST_SEEN_GTID() (page 273) 4.0
WSREP_LAST_WRITTEN_GTID()
(page 274)

4.0

WSREP_SYNC_WAIT_UPTO_GTID()
(page 274)

gtid [timeout] 4.0

WSREP_LAST_SEEN_GTID()

Much like LAST_INSERT_ID() for getting the identification number of the last row inserted in MySQL, this func-
tion returns the Global Transaction ID of the last write transaction observed by the client.

8.2. Galera Functions 273

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Function WSREP_LAST_SEEN_GTID()
Arguments None
Initial Version Version 4.0

This function returns the Global Transaction ID of the last write transaction observed by the client. It can be useful
in combination with WSREP_SYNC_WAIT_UPTO_GTID() (page 274). You can use this parameter to identify the
transaction upon which it should wait before unblocking the client.

Below is an example of how you might use the WSREP_LAST_SEEN_GTID() function to get the Global Transaction
ID of the last write transaction observed:

SELECT WSREP_LAST_SEEN_GTID();

WSREP_LAST_WRITTEN_GTID()

This function returns the Global Transaction ID of the last write transaction made by the client.

Function WSREP_LAST_WRITTEN_GTID()
Arguments None
Initial Version Version 4.0

This function returns the Global Transaction ID of the last write transaction made by the client. This can be useful
in combination with WSREP_SYNC_WAIT_UPTO_GTID() (page 274). You can use this parameter to identify the
transaction upon which it should wait before unblocking the client.

Below is an example of how you might use the WSREP_LAST_SEEN_GTID() function to get the Global Transaction
ID of the last write transaction observed:

BEGIN;

UPDATE table_name SET id = 0
WHERE field = 'example';

COMMIT;

SELECT WSREP_LAST_WRITTEN_GTID();

WSREP_SYNC_WAIT_UPTO_GTID()

This function blocks the client until the node applies and commits the given transaction.

Function WSREP_SYNC_WAIT_UPTO_GTID()
Required Arguments Global Transaction ID
Optional Arguments timeout
Initial Version Version 4.0

This function blocks the client until the node applies and commits the given Global Transaction ID. Optional argument
accepts timeout in seconds. If you do not provide a timeout, it will continue to block indefinitely. It returns the
following values:

• 1: The node applied and committed the given Global Transaction ID.

• ER_LOCAL_WAIT_TIMEOUT Error: The function times out before the node can apply the transaction.

274 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

• ER_WRONG_ARGUMENTS Error: The function is given an incorrect Global Transaction ID.

Below is an example of how you might use the WSREP_SYNC_WAIT_UPTO_GTID() function:

$transaction_gtid = SELECT WSREP_LAST_SEEN_GTID();
...
SELECT WSREP_SYNC_WAIT_UPTO_GTID($transaction_gtid);

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Auto-Eviction (page 103)

• SSL Certificates (page 222)

• Home

• Docs (page 1)

• KB

• Training

• FAQ

8.3 Galera Parameters

As of version 0.8, Galera Cluster accepts parameters as semicolon-separated key value pair lists, such as key1 =
value1; key2 = value2. In this way, you can configure an arbitrary number of Galera Cluster parameters in
one call. A key consists of parameter group and parameter name: <group>.<name>, where <group> corresponds
roughly to some Galera module.

All wsrep_provider_options settings need to be specified on a single line. In case of multiple instances of
wsrep_provider_options, only the last one is used.

Below is a list of all of the Galera parameters. Each is also a link to further down the page where you may find more
information. There are a few things to know about this table:

• For numeric values related to memory size, Galera Cluster accepts the numeric modifiers, K, M, G, and T to
represent 210, 220, 230 and 240, respectively.

• Galera Cluster accepts the following boolean values: 0, 1, YES, NO, TRUE, FALSE, ON, OFF.

• Time periods must be expressed in the ISO8601 format. See some of the examples below.

• The parameters that are noted as for debugging only are strictly for use in troubleshooting problems. You should
not implement these in production environments.

8.3. Galera Parameters 275

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Parameter Default Dynamic Debug
Only

Initial
Version

Version
Depre-
cated

base_dir (page 283)
base_host (page 283) detected network address 1.0
base_port (page 283) 4567 1.0
cert.log_conflicts (page 283) NO

Yes

2.0

cert.optimistic_pa
(page 284)

YES

Yes

3.25

debug (page 284) NO

Yes

2.0

datadir (page 284) /var/lib/mysql/

Yes

1.0

evs.auto_evict (page 284) 0

No

3.8

evs.causal_keepalive_period
(page 285)

0

No

1.0

evs.consensus_timeout
(page 285)

PT30S

No

Yes 1.0, 2.0

evs.debug_log_mask
(page 285)

0x1

Yes

1.0

evs.delayed_keep_period
(page 286)

PT30S

No

3.8

evs.delay_margin (page 286) PT1S

No

3.8

evs.evict (page 286)

No

3.8

Continued on next page

276 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Table 2 – continued from previous page
Parameter Default Dynamic Debug

Only
Initial
Version

Version
Depre-
cated

evs.inactive_check_period
(page 287)

PT1S

No

1.0

evs.inactive_timeout
(page 287)

PT15S

No

1.0

evs.info_log_mask
(page 287)

0

No

1.0

evs.install_timeout
(page 288)

PT7.5S

Yes

1.0

evs.join_retrans_period
(page 288)

PT1S

Yes

1.0

evs.keepalive_period
(page 289)

PT1S

No

1.0

evs.max_install_timeouts
(page 289)

1

No

1.0

evs.send_window (page 289) 4

Yes

1.0

evs.stats_report_period
(page 290)

PT1M

No

1.0

evs.suspect_timeout
(page 290)

PT5S

No

1.0

evs.use_aggregate
(page 290)

TRUE

No

1.0

evs.user_send_window
(page 290)

2

Yes

1.0

Continued on next page

8.3. Galera Parameters 277

Galera Cluster Documentation, Releases 3.x and 4.x

Table 2 – continued from previous page
Parameter Default Dynamic Debug

Only
Initial
Version

Version
Depre-
cated

evs.view_forget_timeout
(page 291)

PT5M

No

1.0

evs.version (page 291) 0

No

Yes 1.0

gcache.dir (page 291) working directory

No

1.0

gcache.name (page 292) galera.cache

No

1.0

gcache.keep_pages_size
(page 292)

0

No

1.0

gcache.mem_size (page 292) 0

No

gcache.page_size (page 293) 128M

No

1.0

gcache.recover (page 293) no

No

3.19

gcache.size (page 293) 128M

No

1.0

gcomm.thread_prio
(page 293)

No

3.0

gcs.fc_debug (page 294) 0

No

1.0

gcs.fc_factor (page 294) 1.0

No

1.0

Continued on next page

278 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Table 2 – continued from previous page
Parameter Default Dynamic Debug

Only
Initial
Version

Version
Depre-
cated

gcs.fc_limit (page 295) 16

Yes

1.0

gcs.fc_master_slave
(page 295)

NO

No

1.0 4.10

gcs.fc_single_primary
(page 295)

NO

No

4.10

gcs.max_packet_size
(page 295)

64500

No

1.0

gcs.max_throttle (page 296) 0.25

No

1.0

gcs.recv_q_hard_limit
(page 296)

LLONG_MAX

No

1.0

gcs.recv_q_soft_limit
(page 296)

0.25

No

1.0

gcs.sync_donor (page 296) NO

No

1.0

gcs.vote_policy (page 297) 0

No

1.0

gmcast.isolate (page 297) 0

Yes

Yes

gmcast.listen_addr
(page 298)

tcp://0.0.0.0:4567

No

1.0

gmcast.mcast_addr
(page 298)

No

1.0

Continued on next page

8.3. Galera Parameters 279

Galera Cluster Documentation, Releases 3.x and 4.x

Table 2 – continued from previous page
Parameter Default Dynamic Debug

Only
Initial
Version

Version
Depre-
cated

gmcast.mcast_ttl (page 298) 1

No

1.0

gmcast.peer_timeout
(page 299)

PT3S

No

1.0

gmcast.segment (page 299) 0

No

3.0

gmcast.time_wait (page 299) PT5S

No

1.0

gmcast.version (page 300) n/a

No

Yes 1.0

innodb_flush_log_at_trx_commit
(page 300)

1

Yes

ist.recv_addr (page 300)

No

1.0

ist.recv_bind (page 301)

No

3.0

pc.announce_timeout
(page 302)

PT3S

No

2.0

pc.bootstrap (page 301) n/a

No

2.0

pc.checksum (page 302) FALSE

No

1.0

pc.ignore_sb (page 302) FALSE

Yes

1.0

Continued on next page

280 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Table 2 – continued from previous page
Parameter Default Dynamic Debug

Only
Initial
Version

Version
Depre-
cated

pc.ignore_quorum
(page 303)

FALSE

Yes

1.0

pc.linger (page 303) PT2S

No

1.0

pc.npvo (page 303) FALSE

No

1.0

pc.recovery (page 301) TRUE

No

3.0

pc.version (page 305) n/a

No

Yes 1.0

pc.wait_prim (page 304) TRUE

No

1.0

pc.wait_prim_timeout
(page 304)

PT30S

No

2.0

pc.weight (page 304) 1

Yes

2.4

protonet.backend (page 305) asio

No

1.0 4.14

protonet.version (page 305) n/a

No

Yes 1.0 4.14

repl.causal_read_timeout
(page 306)

PT30S

No

1.0

repl.commit_order
(page 305)

3

No

1.0

Continued on next page

8.3. Galera Parameters 281

Galera Cluster Documentation, Releases 3.x and 4.x

Table 2 – continued from previous page
Parameter Default Dynamic Debug

Only
Initial
Version

Version
Depre-
cated

repl.key_format (page 306) FLAT8

No

3.0

repl.max_ws_size (page 307) 2147483647

No

3.0

repl.proto_max (page 307) 5

No

2.0

socket.recv_buf_size
(page 307)

auto

Yes

3.17

socket.send_buf_size
(page 307)

auto

Yes

3.29

socket.ssl (page 308) 0

No

socket.ssl_ca (page 308)

No

1.0

socket.ssl_cert (page 308)

No

1.0

socket.checksum (page 308) 1 (vs. 2); 2 (vs. 3)

No

2.0

socket.dynamic (page 309) FALSE

No

4.8

socket.ssl_cipher (page 309)

No

1.0

socket.ssl_compression
(page 310)

YES

No

1.0 4.14

Continued on next page

282 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Table 2 – continued from previous page
Parameter Default Dynamic Debug

Only
Initial
Version

Version
Depre-
cated

socket.ssl_key (page 310)

No

1.0

socket.ssl_password_file
(page 310)

No

1.0

socket.ssl_reload (page 310)

No

4.8

base_dir

Specifies the data directory.

base_host

Global variable for internal use.

Default Value detected network address
Dynamic
Initial Version

Warning: Since this is for internal use only, do not manually set the base_host variable.

base_port

Global variable for internal use.

Default Value 4567
Dynamic
Initial Version

Warning: Since this is for internal use only, do not manually set the base_port variable.

cert.log_conflicts

Log details of certification failures.

8.3. Galera Parameters 283

Galera Cluster Documentation, Releases 3.x and 4.x

Default Value NO
Dynamic Yes
Initial Version 2.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="cert.log_conflicts=NO"

cert.optimistic_pa

Controls parallel applying of replica actions. When enabled allows full range of parallelization as determined by
certification algorithm. When disabled limits parallel applying window to not exceed that seen on primary. In other
words, the action starts applying no sooner than all actions it has seen on the primary are committed.

Default Value YES
Dynamic Yes
Initial Version 3.25

wsrep_provider_options="cert.optimistic_pa=NO"

datadir

Set the path to the database root directory.

Default Value /var/lib/mysql/
Dynamic Yes
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the my.cnf configuration file:

datadir=/var/lib/mysql/

debug

Enable debugging.

Default Value NO
Dynamic Yes
Initial Version 2.0

wsrep_provider_options="debug=NO"

evs.auto_evict

Defines how many entries the node allows for given a delayed node before it triggers the Auto Eviction protocol.

284 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Default Value 0
Dynamic No
Initial Version 3.8

Each cluster node monitors the group communication response times from all other nodes. When the cluster registers
delayed response from a given node, it adds an entry for that node to its delayed list. If the majority of the cluster
nodes show the node as delayed, the node is permanently evicted from the cluster.

This parameter determines how many entries a given node can receive before it triggers Auto Eviction.

When this parameter is set to 0, it disables the Auto Eviction protocol for this node. Even when you disable Auto
Eviction, though; the node continues to monitor response times from the cluster.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.auto_evict=5"

For more information on the Auto Eviction process, see Auto-Eviction (page 103).

evs.causal_keepalive_period

For developer use only. Defaults to evs.keepalive_period.

Default Value
Dynamic No
Initial Version 1.0

evs.consensus_timeout

Timeout on reaching the consensus about cluster membership.

Default Value PT30S
Dynamic No
Initial Version 1.0
Deprecated 2.0

This variable is mostly used for troubleshooting purposes and should not be implemented in a production environment.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.consensus_timeout=PT30S"

Note: This feature has been deprecated. It is succeeded by evs.install_timeout (page 288).

evs.debug_log_mask

Control EVS debug logging, only effective when wsrep_debug is in use.

8.3. Galera Parameters 285

Galera Cluster Documentation, Releases 3.x and 4.x

Default Value 0x1
Dynamic Yes
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.debug_log_mask=0x1"

evs.delayed_keep_period

Defines how long this node requires a delayed node to remain responsive before it removes an entry from the delayed
list.

Default Value PT30S
Dynamic No
Initial Version 3.8

Each cluster node monitors the group communication response times from all other nodes. When the cluster registered
delayed responses from a given node, it adds an entry for that node to its delayed list. Nodes that remain on the delayed
list can trigger Auto Eviction, which removes them permanently from the cluster.

This parameter determines how long a node on the delayed list must remain responsive before it removes one entry.
The number of entries on the delayed list and how long it takes before the node removes all entries depends on how
long the delayed node was unresponsive.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.delayed_keep_period=PT45S"

For more information on the delayed list and the Auto Eviction process, see Auto-Eviction (page 103).

evs.delay_margin

Defines how long the node allows response times to deviate before adding an entry to the delayed list.

Default Value PT1S
Dynamic No
Initial Version 3.8

Each cluster node monitors group communication response times from all other nodes. When the cluster registers a
delayed response from a given node, it adds an entry for that node to its delayed list. Delayed nodes can trigger Auto
Eviction, which removes them permanently from the cluster.

This parameter determines how long a delay can run before the node adds an entry to the delayed list. You must set
this parameter to a value higher than the round-trip delay time (RTT) between the nodes.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.delay_margin=PT5S"

For more information on the delayed list and the Auto Eviction process, see Auto-Eviction (page 103).

286 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

evs.evict

If set to the gcomm UUID of some node, that node will be evicted from the cluster. Setting this parameter to an empty
string causes the eviction list to be cleared on the node where it is set.

Default Value
Dynamic No
Initial Version 3.8

For more information on the eviction and Auto Eviction process, see Auto-Eviction (page 103).

evs.inactive_check_period

Defines how often you want the node to check for peer inactivity.

Default Value PT1S
Dynamic No
Initial Version 1.0

Each cluster node monitors group communication response times from all other nodes. When the cluster registers a
delayed response from a given node, it adds an entry for that node to its delayed list, which can lead to the delayed
node’s eviction from the cluster.

This parameter determines how often you want the node to check for delays in the group communication responses
from other cluster nodes.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.inactive_check_period=PT1S"

evs.inactive_timeout

Defines a hard limit on node inactivity.

Default Value PT15S
Dynamic No
Initial Version 1.0

Hard limit on the inactivity period, after which the node is pronounced dead.

Each cluster node monitors group communication response times from all other nodes. When the cluster registers a
delayed response from a given node, it add an entry for that node to its delayed list, which can lead to the delayed
node’s eviction from the cluster.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.inactive_timeout=PT15S"

This parameter sets a hard limit for node inactivity. If a delayed node remains unresponsive for longer than this period,
the node pronounces the delayed node as dead.

8.3. Galera Parameters 287

Galera Cluster Documentation, Releases 3.x and 4.x

evs.info_log_mask

Defines additional logging options for the EVS Protocol.

Default Value 0
Dynamic No
Initial Version 1.0

The EVS Protocol monitors group communication response times and controls the node eviction and auto eviction
processes. This parameter allows you to enable additional logging options, through a bitmask value.

• 0x1 Provides extra view change info.

• 0x2 Provides extra state change info

• 0x4 Provides statistics

• 0x8 Provides profiling (only in builds with profiling enabled)

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.info_log_mask=0x4"

evs.install_timeout

Defines the timeout for install message acknowledgments.

Default Value PT7.5S
Dynamic Yes
Initial Version 1.0

Each cluster node monitors group communication response times from all other nodes, checking whether they are
responsive or delayed. This parameter determines how long you want the node to wait on install message acknowl-
edgments.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.install_timeout=PT7.5S"

Note: This parameter replaces evs.consensus_timeout (page 285).

evs.join_retrans_period

Defines how often the node retransmits EVS join messages when forming cluster membership.

Default Value PT1S
Dynamic Yes
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

288 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_provider_options="evs.join_retrans_period=PT1S"

evs.keepalive_period

Defines how often the node emits keepalive signals.

Default Value PT1S
Dynamic No
Initial Version 1.0

Each cluster node monitors group communication response times from all other nodes. When there is no traffic going
out for the cluster to monitor, nodes emit keepalive signals so that other nodes have something to measure. This
parameter determines how often the node emits a keepalive signal, absent any other traffic.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.keepalive_period=PT1S"

evs.max_install_timeouts

Defines the number of membership install rounds to try before giving up.

Default Value 1
Dynamic No
Initial Version 1.0

This parameter determines the maximum number of times that the node tries for a membership install acknowledg-
ment, before it stops trying. The total number of rounds it tries is this value plus 2.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.max_install_timeouts=1"

evs.send_window

Defines the maximum number of packets at a time in replication.

Default Value 4
Dynamic Yes
Initial Version 1.0

This parameter determines the maximum number of packets the node uses at a time in replication. For clusters
implemented over WAN, you can set this value considerably higher, (for example, 512), than for clusters implemented
over LAN.

You must use a value that is greater than evs.user_send_window (page 290). The recommended value is double
evs.user_send_window (page 290).

The excerpt below is an example of how this Galera parameter might look in the configuration file:

8.3. Galera Parameters 289

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_provider_options="evs.send_window=4"

evs.stats_report_period

Control period of EVS statistics reporting. The node is pronounced dead.

Default Value PT1M
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.stats_report_period=PT1M"

evs.suspect_timeout

Defines the inactivity period after which a node is suspected as dead.

Default Value PT5S
Dynamic No
Initial Version 1.0

Each node in the cluster monitors group communications from all other nodes in the cluster. This parameter determines
the period of inactivity before the node suspects another of being dead. If all nodes agree on that, the cluster drops the
inactive node.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.suspect_timeout=PT5S"

evs.use_aggregate

Defines whether the node aggregates small packets into one when possible.

Default Value TRUE
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.use_aggregate=TRUE"

evs.user_send_window

Defines the maximum number of data packets at a time in replication.

Default Value 2
Dynamic Yes
Initial Version 1.0

290 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

This parameter determines the maximum number of data packets the node uses at a time in replication. For clusters
implemented over WAN, you can set this to a value considerably higher than cluster implementations over LAN, (for
example, 512).

You must use a value that is smaller than evs.send_window (page 289). The recommended value is half
evs.send_window (page 289).

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.user_send_window=2"

For more information, see evs.send_window (page 289).

evs.view_forget_timeout

Defines how long the node saves past views from the view history.

Default Value PT5M
Dynamic No
Initial Version 1.0

Each node maintains a history of past views. This parameter determines how long you want the node to save past
views before dropping them from the table.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.view_forget_timeout=PT5M"

evs.version

Defines the EVS Protocol version.

Default Value 0 (up to Galera Cluster version 3.9) | 1 (as of Galera Cluster version 4.0)
Dynamic No
Initial Version 1.0

This parameter determines which version of the EVS Protocol the node uses. In order to ensure backwards compati-
bility, the parameter defaults to 0 on Galera Cluster versions prior to 3.9. Certain EVS Protocol features, such as Auto
Eviction, require you to upgrade to more recent versions. As of Galera Cluster version 4.0, the parameter defaults to
1.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="evs.version=1"

For more information on the procedure to upgrade from one version to another, see Upgrading the EVS Protocol
(page 104).

gcache.dir

Defines the directory where the write-set cache places its files.

8.3. Galera Parameters 291

Galera Cluster Documentation, Releases 3.x and 4.x

Default Value /path/to/working_dir
Dynamic No
Initial Version 1.0

When nodes receive state transfers they cannot process incoming write-sets until they finish updating their state. Under
certain methods, the node that sends the state transfer is similarly blocked. To prevent the database from falling further
behind, GCache saves the incoming write-sets on memory mapped files to disk.

This parameter determines where you want the node to save these files for write-set caching. By default, GCache uses
the working directory for the database server.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcache.dir=/usr/share/galera"

gcache.keep_pages_size

Total size of the page storage pages to keep for caching purposes. If only page storage is enabled, one page is always
present.

Default Value 0
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcache.keep_pages_size=0"

gcache.mem_size

The maximum size of size of the malloc() store for setups that have spare RAM.

Default Value 0
Dynamic No

gcache.name

Defines the filename for the write-set cache.

Default Value galera.cache
Dynamic No
Initial Version 1.0

When nodes receive state transfers they cannot process incoming write-sets until they finish updating their state. Under
certain methods, the node that sends the state transfer is similarly blocked. To prevent the database from falling further
behind, GCache saves the incoming write-sets on memory-mapped files to disk.

This parameter determines the name you want the node to use for this ring buffer storage file.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

292 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_provider_options="gcache.name=galera.cache"

gcache.page_size

Size of the page files in page storage. The limit on overall page storage is the size of the disk. Pages are prefixed by
gcache.page.

Default Value 128M
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcache.page_size=128M"

gcache.recover

Determines whether gcache recovery takes place on node startup. If gcache could be recovered successfully, the node
can then provide IST to other joining nodes, which is useful when the whole cluster is being restarted.

Default Value no
Dynamic No
Initial Version 3.19

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcache.recover=yes"

gcache.size

Defines the disk space you want to node to use in caching write-sets.

Default Value 128M
Dynamic No
Initial Version 1.0

When nodes receive state transfers they cannot process incoming write-sets until they finish updating their state. Under
certain methods, the node that sends the state transfer is similarly blocked. To prevent the database from falling further
behind, GCache saves the incoming write-sets on memory-mapped files to disk.

This parameter defines the amount of disk space you want to allocate for the present ring buffer storage. The node
allocates this space when it starts the database server.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcache.size=128M"

For more information on customizing the write-set cache, see the Best Practice Articles.

8.3. Galera Parameters 293

Galera Cluster Documentation, Releases 3.x and 4.x

gcomm.thread_prio

Defines the policy and priority for the gcomm thread.

Default Value
Dynamic No
Initial Version 3.0

Using this option, you can raise the priority of the gcomm thread to a higher level than it normally uses. You may find
this useful in situations where Galera Cluster threads do not receive sufficient CPU time, due to competition with other
MySQL threads. In these cases, when the thread scheduler for the operating system does not run the Galera threads
frequently enough, timeouts may occur, causing the node to drop from the cluster.

The format for this option is: <policy>:<priority>. The priority value is an integer. The policy value supports
the following options:

• other Designates the default time-sharing scheduling in Linux. They can run until they are blocked by an I/O
request or preempted by higher priorities or superior scheduling designations.

• fifo Designates first-in out scheduling. These threads always immediately preempt any currently running
other, batch or idle threads. They can run until they are either blocked by an I/O request or preempted by a FIFO
thread of a higher priority.

• rr Designates round-robin scheduling. These threads always preempt any currently running other, batch or idle
threads. The scheduler allows these threads to run for a fixed period of a time. If the thread is still running when
this time period is exceeded, they are stopped and moved to the end of the list, allowing another round-robin
thread of the same priority to run in their place. They can otherwise continue to run until they are blocked by an
I/O request or are preempted by threads of a higher priority.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcomm.thread_prio=rr:2"

gcs.fc_debug

Post debug statistics about replication flow every this number of writesets.

Default Value 0
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.fc_debug=0"

gcs.fc_factor

Resume replication after recv queue drops below this fraction of gcs.fc_limit.

Default Value 0.5
Dynamic Yes
Initial Version 1.0

294 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.fc_factor=0.5"

gcs.fc_limit

Pause replication if recv queue exceeds this number of writesets. For primary-replica setups this number can be
increased considerably.

Default Value 16
Dynamic Yes
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.fc_limit=16"

gcs.fc_master_slave

Deprecated as of Galera 4.10 in favor of gcs.fc_single_primary.

gcs.fc_single_primary

Defines whether there is more than one source of replication.

As the number of nodes in the cluster grows, the larger the calculated gcs.fc_limit gets. At the same time, the
number of writes from the nodes increases.

When this parameter value is set to NO (multi-primary), the gcs.fc_limit parameter is dynamically modified to
give more margin for each node to be a bit further behind applying writes.

The gcs.fc_limit parameter is modified by the square root of the cluster size, that is, in a four-node cluster it is
two times higher than the base value. This is done to compensate for the increasing replication rate noise.

Default Value NO
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.fc_single_primary=NO"

gcs.max_packet_size

All writesets exceeding that size will be fragmented.

Default Value 64500
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

8.3. Galera Parameters 295

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_provider_options="gcs.max_packet_size=64500"

gcs.max_throttle

How much to throttle replication rate during state transfer (to avoid running out of memory). Set the value to 0.0 if
stopping replication is acceptable for completing state transfer.

Default Value 0.25
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.max_throttle=0.25"

gcs.recv_q_hard_limit

Maximum allowed size of recv queue. This should normally be half of (RAM + swap). If this limit is exceeded, Galera
Cluster will abort the server.

Default Value LLONG_MAX
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.recv_q_hard_limit=LLONG_MAX"

gcs.recv_q_soft_limit

The fraction of gcs.recv_q_hard_limit (page 296) after which replication rate will be throttled.

Default Value 0.25
Dynamic No
Initial Version 1.0

The degree of throttling is a linear function of recv queue size and goes from 1.0 (full rate) at
gcs.recv_q_soft_limit (page 296) to gcs.max_throttle (page 296) at gcs.recv_q_hard_limit (page 296) Note that full
rate, as estimated between 0 and gcs.recv_q_soft_limit (page 296) is a very imprecise estimate of a regular replica-
tion rate.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.recv_q_soft_limit=0.25"

296 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

gcs.sync_donor

Should the rest of the cluster keep in sync with the donor? YES means that if the donor is blocked by state transfer,
the whole cluster is blocked with it.

Default Value NO
Dynamic No
Initial Version 1.0

If you choose to use value YES, it is theoretically possible that the Donor Node cannot keep up with the rest of the
cluster due to the extra load from the SST. If the node lags behind, it may send flow control messages stalling the
whole cluster. However, you can monitor this using the wsrep_flow_control_paused (page 321) status variable.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.sync_donor=NO"

gcs.vote_policy

When a cluster node fails to apply a writeset, it initiates voting on the outcome. Every node casts a vote, that is, a hash
of the error message or 0, if there was no error. If a node votes “wrong”, the node is considered to be inconsistent and
it shuts down. gcs.vote_policy decides on how the votes are being counted and how to choose the winner:

• gcs.vote_policy = 0 - The outcome that has more votes is chosen as the winner. In other words, simple
majority wins. In the case of a tie between 0 (success) and non-0 (error) outcomes, 0 (success) is preferred.

• gcs.vote_policy > 0 - If success gets as many as or more votes that the parameter value defines, it is
chosen as the winner, even if in minority. For example, if gcs.vote_policy=1, only the node that suc-
cessfully committed a transaction would remain primary. Note that if gcs.vote_policy=1, an inconsistent
primary may crash all the secondaries.

Default Value 0
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gcs.vote_policy=0"

gmcast.isolate

Warning: This parameter is meant for testing use only, and never meant for production use cases.

Defines how cluster connections are handled.

Default Value 0
Dynamic Yes
Initial Version 1.0

The options are:

8.3. Galera Parameters 297

Galera Cluster Documentation, Releases 3.x and 4.x

• 0 - Cluster connections are handled as usual.

• 1 - The node closes all cluster connections, does not open new cluster connections and rejects all incoming
cluster connections.

• 2 - The node closes all cluster connections and terminates the group communication, moving the node into
disconnected state.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gmcast.isolate=1"

gmcast.listen_addr

Address at which Galera Cluster listens to connections from other nodes. By default the port to listen at is taken from
the connection address. This setting can be used to overwrite that.

Default Value tcp://0.0.0.0:4567
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gmcast.listen_addr=tcp://0.0.0.0:4567"

gmcast.mcast_addr

If set, UDP multicast will be used for replication, for example:

Default Value
Dynamic No
Initial Version 1.0

The value must be the same on all nodes.

If you are planning to build a large cluster, we recommend using UDP.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gmcast.mcast_addr=239.192.0.11"

gmcast.mcast_ttl

Time to live value for multicast packets.

Default Value 1
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

298 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_provider_options="gmcast.mcast_ttl=1"

gmcast.peer_timeout

Connection timeout for inactive connections.

Default Value PT3S
Dynamic No
Initial Version 1.0

GMCast module monitors liveness of the socket connections on a regular basis. Nodes exchange periodically repli-
cation and keepalives messages, which are expected to be received more frequently than gmcast.peer_timeout
duration. The gmcast.peer_timeout defines the timeout after which an idle socket connection between two
nodes is considered inactive and will be closed and reopened again. If a socket connection is closed due to timeout,
the relaying protocol is activated as a side effect to keep messages delivered to all members in the cluster.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gmcast.peer_timeout=PT3S"

gmcast.segment

Define which network segment this node is in. Optimisations on communication are performed to minimise the amount
of traffic between network segments including writeset relaying and IST and SST donor selection. The gmcast.segment
(page 299) value is an integer from 0 to 255. By default all nodes are placed in the same segment (0).

Default Value 0
Dynamic No
Initial Version 3.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="gmcast.segment=0"

gmcast.time_wait

Time to wait until allowing peer declared outside of stable view to reconnect.

Default Value PT5S
Dynamic No
Initial Version 1.0

In case a node leaves or gets partitioned from the cluster, it is kept isolated from the rest of the cluster for a while to
avoid distractions to membership protocol operation. Option gmcast.time_wait denotes the time period during
which nodes in the primary component refuse connection attempts from nodes not in the primary component in the
following way: The nodes which partitioned from the cluster are allowed to reconnect after gmcast.time_wait/2
seconds, the nodes which left the group completely are allowed to reconnect after gmcast.time_wait seconds.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

8.3. Galera Parameters 299

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_provider_options="gmcast.time_wait=PT5S"

gmcast.version

This status variable is used to check which gmcast protocol version is used.

Default Value
Dynamic No
Initial Version 1.0

This variable is mostly used for troubleshooting purposes and should not be implemented in a production environment.

innodb_flush_log_at_trx_commit

This variable controls the durability/speed trade-off for commits.

The possible values are:

• 0 - Nothing is done on commit; rather the log buffer is written and flushed to the InnoDB redo log once a second.
This gives better performance, but a server crash can erase the last second of transactions.

• 1 - The log buffer is written to the InnoDB redo log file, and a flush to disk performed after each transaction.
This is required for full ACID compliance.

• 2 - The log buffer is written to the InnoDB redo log after each commit, but flushing takes place every ‘‘inn-
odb_flush_log_at_timeout‘‘(by default once a second). The performance is better, but an operating system crash
or a power outage can cause the last second’s transactions to be lost.

• 3 - Flush to disk at prepare and at commit. This option is slower and usually redundant.

Options 0 and 2 can be faster than 1 or 3.

Default Value 1
Dynamic Yes
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

innodb_flush_log_at_trx_commit="1"

This variable can also be set dynamically at runtime:

SET GLOBAL innodb_flush_log_at_trx_commit=1;

If you set innodb_flush_log_at_trx_commit dynamically at runtime, its value will be reset the next time
the server restarts. To make the value persist on restart, set it also in a configuration file.

Note: If you use MySQL 8 or a later version, you can also use SET PERSIST to ensure the value persists upon
restart.

300 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

ist.recv_addr

Address to listen on for Incremental State Transfer. By default this is the <address>:<port+1> from ws-
rep_node_address (page 253).

Default Value
Dynamic No
Initial Version 2.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="ist.recv_addr=192.168.1.1"

ist.recv_bind

Defines the address that the node binds on for receiving an Incremental State Transfer.

Default Value
Dynamic No
Initial Version 3.16

This option defines the address to which the node will bind in order to receive Incremental State Transfers. When
this option is not set, it takes its value from ist.recv_addr (page 300) or, in the event that that is also not set, from
wsrep_node_address (page 253). You may find it useful when the node runs behind a NAT or in similar cases where
the public and private addresses differ.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="ist.recv_bind=192.168.1.1"

pc.recovery

When set to TRUE, the node stores the Primary Component state to disk, in the gvwstate.dat file. The Primary
Component can then recover automatically when all nodes that were part of the last saved state reestablish communi-
cations with each other.

Default Value TRUE
Dynamic No
Initial Version 3.0

This allows for:

• Automatic recovery from full cluster crashes, such as in the case of a data center power outage.

• Graceful full cluster restarts without the need for explicitly bootstrapping a new Primary Component.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.recovery=TRUE"

Note: In the event that the wsrep position differs between nodes, recovery also requires a full State Snapshot Transfer.

8.3. Galera Parameters 301

Galera Cluster Documentation, Releases 3.x and 4.x

pc.bootstrap

If you set this value to TRUE is a signal to turn a NON-PRIMARY component into PRIMARY.

Default Value
Dynamic Yes
Initial Version 2.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.bootstrap=TRUE"

pc.announce_timeout

Cluster joining announcements are sent every 1
2 second for this period of time or less if the other nodes are discovered.

Default Value PT3S
Dynamic No
Initial Version 2.0

When a node joins the cluster, it will initially broadcast join messages every half a second to inform other nodes about
the joining attempt, but does not handle its own messages to avoid forming membership configuration containing only
itself. This initial join message broadcasting will terminate if at least one other node is seen or if the timeout expires,
whichever happens first.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.announce_timeout=PT3S"

pc.checksum

Checksum replicated messages.

Default Value FALSE
Dynamic No
Initial Version 1.0

If set to true, a CRC16 checksum is computed and included into replicated messages on primary component protocol
level. This checksum is redundant since the checksum does not take into account all protocol layers, and all messages
are checksummed with stronger CRC32C algorithm when transferred between nodes.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.checksum=TRUE"

pc.ignore_sb

Should we allow nodes to process updates even in the case of Split Brain? This is a dangerous setting in a multi-primary
setup, but should simplify things in a primary-replica cluster (especially if only 2 nodes are used).

302 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Default Value FALSE
Dynamic Yes
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.ignore_sb=FALSE"

pc.ignore_quorum

Completely ignore Quorum calculations. For example if the primary splits from several replicas it still remains op-
erational. Use with extreme caution even in primary-replica setups, as replicas will not automatically reconnect to
primary in this case.

Default Value FALSE
Dynamic Yes
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.ignore_quorum=FALSE"

pc.linger

The period for which the PC protocol waits for the EVS termination.

Default Value PT2S
Dynamic No
Initial Version 1.0

When a node leaves the cluster, it will wait up to pc.linger duration to get itself removed gracefully from the
cluster.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.linger=PT2S"

pc.npvo

Control which primary component is allowed to continue in case of conflicting primary components after cluster
partitioning.

Default Value FALSE
Dynamic No
Initial Version 1.0

If the cluster is configured to ignore quorum or split brain, the nodes may continue processing write sets independently
after cluster partitioning, which leads to diverged states. When the cluster merges back to the original configuration,
the pc.npvo controls which partition is allowed to continue after the merge. If the value is FALSE, the partition

8.3. Galera Parameters 303

Galera Cluster Documentation, Releases 3.x and 4.x

with the lowest view identifier (the most immediate successor to the view before partitioning) is allowed to continue.
Otherwise the partition with the highest view identifier (the one which has gone through more configuration changes
or has a representative with highest node identifier) is allowed to continue.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.npvo=FALSE"

pc.wait_prim

Control whether a joining node is allowed to start in non-primary component or if it should wait for primary compo-
nent.

Default Value TRUE
Dynamic No
Initial Version 1.0

This variable can be used to control if a node waits for connecting to the primary component when joining to the
cluster.

With default value TRUE, the joining node waits for the primary component so that the first event delivered by the
group communication system is the primary component view event, or times out with error (see pc.wait_prim_timeout
(page 304)).

With value FALSE, the joining node completes the initialization without waiting for the primary component, and may
end up in non-primary component if no other nodes are seen in pc.announce_timeout (page 302). This is a useful
setting mainly if it is desirable to start the cluster by starting all the nodes at once, and bootstrapping the primary
component with pc.bootstrap (page 301) after all nodes have been started.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.wait_prim=FALSE"

pc.wait_prim_timeout

The timeout for waiting primary component.

Default Value PT30S
Dynamic No
Initial Version 2.0

The timeout after which an error is thrown if a primary view event is not seen when joining a new node into the cluster.
This value is effective only if pc.wait_prim (page 304) is set to TRUE.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.wait_prim_timeout=PT30S"

pc.weight

Node weight for quorum calculation.

304 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

Default Value 1
Dynamic Yes
Initial Version 2.4

For detailed description about weighted quorum see https://galeracluster.com/library/documentation/
weighted-quorum.html

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="pc.weight=1"

pc.version

This variable is used to control which PC protocol version is used.

Default Value
Dynamic No
Initial Version 1.0

This variable is mostly used for troubleshooting purposes and should not be implemented in a production environment.

protonet.backend

This parameter is deprecated and will be removed in the future versions.

Which transport backend to use. Currently only ASIO is supported. This variable is deprecated and will be removed
in the future versions.

Default Value asio
Dynamic No
Initial Version 1.0
Version Deprecated 4.14

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="protonet.backend=asio"

protonet.version

This parameter is deprecated and will be removed in the future versions

This status variable is used to check which transport backend protocol version is used.

Default Value
Dynamic No
Initial Version 1.0
Version Deprecated 4.14

This variable is mostly used for troubleshooting purposes and should not be implemented in a production environment.

8.3. Galera Parameters 305

https://galeracluster.com/library/documentation/weighted-quorum.html
https://galeracluster.com/library/documentation/weighted-quorum.html

Galera Cluster Documentation, Releases 3.x and 4.x

repl.commit_order

Warning: Do not change the default value 3, as other values may produce inconsistencies or even lead to server
crashes.

Whether to allow Out-Of-Order committing (improves parallel applying performance).

Default Value 3
Dynamic No
Initial Version 1.0

Possible settings:

• 0 or BYPASS All commit order monitoring is switched off (useful for measuring performance penalty).

• 1 or OOOC Allows out of order committing for all transactions.

• 2 or LOCAL_OOOC Allows out of order committing only for local transactions.

• 3 or NO_OOOC No out of order committing is allowed (strict total order committing)

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="repl.commit_order=2"

repl.causal_read_timeout

The default timeout for causal read and sync wait operations.

Default Value PT30S
Dynamic No
Initial Version 1.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="repl.causal_read_timeout=PT30S"

repl.key_format

The hash size to use for key formats (in bytes). An A suffix annotates the version.

Default Value FLAT8
Dynamic No
Initial Version 3.0

Possible settings:

• FLAT8

• FLAT8A

• FLAT16

306 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

• FLAT16A

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="repl.key_format=FLAT8"

repl.max_ws_size

The maximum size of a write-set in bytes. This is limited to 2G.

Default Value 2147483647
Dynamic No
Initial Version 3.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="repl.max_ws_size=2147483647"

repl.proto_max

The maximum protocol version in replication. Changes to this parameter will only take effect after a provider restart.

Default Value 5
Dynamic No
Initial Version 2.0

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="repl.proto_max=5"

socket.recv_buf_size

The size of the receive buffer that used on the network sockets between nodes. Galera passes the value to the kernel
via the SO_RCVBUF socket option. The value is either numeric value in bytes or auto which allows the kernel to
autotune the receive buffer. The default was changed from 212992 to auto in 3.29.

Default Value auto
Dynamic No
Initial Version 3.17

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="socket.recv_buf_size=212992"

socket.send_buf_size

The size of the send buffer that used on the network sockets between nodes. Galera passes the value to the kernel
via the SO_SNDBUF socket option. The value is either numeric value in bytes or auto which allows the kernel to
autotune the send buffer.

8.3. Galera Parameters 307

Galera Cluster Documentation, Releases 3.x and 4.x

Default Value auto
Dynamic No
Initial Version 3.29

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="socket.send_buf_size=212992"

socket.ssl

Explicitly enables TLS usage by the wsrep provider.

Default Value No
Dynamic No

socket.ssl_ca

Defines the path to the SSL Certificate Authority (CA) file.

Default Value
Dynamic No
Initial Version 1.0

The node uses the CA file to verify the signature on the certificate. You can use either an absolute path or one relative
to the working directory. The file must use PEM format.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options='socket.ssl_ca=/path/to/ca-cert.pem'

For more information on generating SSL certificate files for your cluster, see SSL Certificates (page 222).

socket.ssl_cert

Defines the path to the SSL certificate.

Default Value
Dynamic No
Initial Version 1.0

The node uses the certificate as a self-signed public key in encrypting replication traffic over SSL. You can use either
an absolute path or one relative to the working directory. The file must use PEM format.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="socket.ssl_cert=/path/to/server-cert.pem"

For more information on generating SSL certificate files for your cluster, see SSL Certificates (page 222).

308 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

socket.checksum

Checksum to use on socket layer.

Default Value 1 (before vs. 3), 2
Dynamic No
Initial Version 2.0

The possible values are:

• 0 - Disable checksum

• 1 - CRC32

• 2 - CRC-32C (optimized and potentially HW-accelerated on Intel CPUs)

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="socket.checksum=2"

socket.dynamic

Enable connection engine to accept both SSL and TCP connections.

Default Value false
Dynamic No
Initial Version 4.8

By enabling this parameter, it should be possible for Galera to communicate with both SSL and TCP connections. If
SSL is enabled it will try to establish/accept SSL connection first and than fallback to TCP connection if necessary.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="socket.dynamic=true"

socket.ssl_cipher

Symmetric cipher to use for encrypted connections.

Default Value
Dynamic No
Initial Version 1.0

This parameter defines which cipher to use for encrypted SSL connections. If left empty, the SSL library implementa-
tion default cipher is used.

The value format depends on used SSL implementation. For OpenSSL, see cipher list format description in https:
//www.openssl.org/docs/manmaster/man1/openssl-ciphers.html.

The default value was AES128-SHA until Galera version 3.24.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

8.3. Galera Parameters 309

https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html
https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_provider_options="socket.ssl_cipher=AES128-SHA256"

socket.ssl_compression

This parameter is deprecated and will be removed in the future versions.

Whether to enable compression on SSL connections.

Default Value YES
Dynamic No
Initial Version 1.0
Version Deprecated 4.14

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="socket.ssl_compression=YES"

socket.ssl_key

Defines the path to the SSL certificate key.

Default Value
Dynamic No
Initial Version 1.0

The node uses the certificate key a self-signed private key in encrypting replication traffic over SSL. You can use either
an absolute path or one relative to the working directory. The file must use PEM format.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="socket.ssl_key=/path/to/server-key.pem"

For more information on generating SSL certificate files for your cluster, see SSL Certificates (page 222).

socket.ssl_password_file

Defines a password file for use in SSL connections.

Default Value
Dynamic No
Initial Version 1.0

In the event that you have your SSL key file encrypted, the node uses the SSL password file to decrypt the key file.

The excerpt below is an example of how this Galera parameter might look in the configuration file:

wsrep_provider_options="socket.ssl_password_file=/path/to/password-file"

310 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

socket.ssl_reload

Reinitialize SSL context.

Default Value
Dynamic Yes
Initial Version 4.8

Parameter used to dynamically reinitialize the Galera SSL context. This is most useful if you need to replace a
certificate that is about to expire without restarting the server. You need to change the certificate and key files at the
relevant paths defined by SSL variables.

The excerpt below is an example of how this Galera parameter can be triggered from running database:

SET GLOBAL wsrep_provider_options = 'socket.ssl_reload=1';

8.3.1 Setting Galera Parameters in MySQL

You can set Galera Cluster parameters in the my.cnf configuration file as follows:

wsrep_provider_options="gcs.fc_limit=256;gcs.fc_factor=0.9"

This is useful in primary-replica setups.

You can set Galera Cluster parameters through a MySQL client with the following query:

SET GLOBAL wsrep_provider_options="evs.send_window=16";

This query only changes the evs.send_window (page 289) value.

To check which parameters are used in Galera Cluster, enter the following query:

SHOW VARIABLES LIKE 'wsrep_provider_options';

Related Documents

• Auto-Eviction (page 103)

• SSL Certificates (page 222)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

8.3. Galera Parameters 311

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• KB

• Training

• FAQ

8.4 Galera Status Variables

These variables are Galera Cluster 0.8.x status variables. There are two types of wsrep-related status variables:

• Galera Cluster-specific variables exported by Galera Cluster

• Variables exported by MySQL. These variables are for the general wsrep provider.

This distinction is of importance for developers only. For convenience, all status variables are presented as a single list
below. They’re noted as to whether they are exported by Galera or by MySQL.

Status Variable Exporter Example Value Initial Version
wsrep_apply_oooe (page 313) Galera 0.671120 1.0
wsrep_apply_oool (page 314) Galera 0.195248 1.0
wsrep_apply_waits (page 314) Galera 13549 3.34,4.9
wsrep_apply_window (page 314) Galera 5.163966 1.0
wsrep_cert_deps_distance (page 315) Galera 23.88889 1.0
wsrep_cert_index_size (page 315) Galera 30936 1.0
wsrep_cert_interval (page 315) Galera 1.0
wsrep_cluster_conf_id (page 316) MySQL 34 1.0
wsrep_cluster_size (page 316) MySQL 1.0
wsrep_cluster_state_uuid (page 317) MySQL 1.0
wsrep_cluster_status (page 317) MySQL Primary 1.0
wsrep_cluster_weight (page 317) MySQL 3 3.24
wsrep_commit_oooe (page 318) Galera 0.000000 1.0
wsrep_commit_oool (page 318) Galera 0.000000 1.0
wsrep_commit_window (page 318) Galera 0.000000 1.0
wsrep_connected (page 319) Galera ON 1.0
wsrep_desync_count (page 319) Galera 0 3.0
wsrep_evs_delayed (page 320) Galera 3.8
wsrep_evs_evict_list (page 320) Galera 3.0
wsrep_evs_repl_latency (page 320) Galera 3.0
wsrep_evs_state (page 321) Galera 3.8
wsrep_flow_control_active (page 321) Galera false 3.31
wsrep_flow_control_paused (page 321) Galera 0.184353 1.0
wsrep_flow_control_paused_ns (page 322) Galera 20222491180 1.0
wsrep_flow_control_recv (page 322) Galera 11 1.0
wsrep_flow_control_requested (page 323) Galera false 3.31
wsrep_flow_control_sent (page 323) Galera 7 1.0
wsrep_gcomm_uuid (page 324) Galera 1.0
wsrep_gmcast_seqment (page 323) Galera 2 3.31

Continued on next page

312 Chapter 8. Reference

https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

Table 3 – continued from previous page
Status Variable Exporter Example Value Initial Version
wsrep_incoming_addresses (page 324) Galera 1.0
wsrep_ist_receive_status (page 324) Galera 1.0
wsrep_last_committed (page 325) Galera 409745 1.0
wsrep_local_bf_aborts (page 325) Galera 960 1.0
wsrep_local_cached_downto (page 325) Galera 1.0
wsrep_local_cert_failures (page 326) Galera 333 1.0
wsrep_local_commits (page 326) Galera 14981 1.0
wsrep_local_index (page 326) Galera 1 1.0
wsrep_local_recv_queue (page 327) Galera 0 1.0
wsrep_local_recv_queue_avg (page 327) Galera 3.348452 1.0
wsrep_local_recv_queue_max (page 327) Galera 10 1.0
wsrep_local_recv_queue_min (page 328) Galera 0 1.0
wsrep_local_replays (page 328) Galera 0 1.0
wsrep_local_send_queue (page 328) Galera 1 1.0
wsrep_local_send_queue_avg (page 329) Galera 0.145000 1.0
wsrep_local_send_queue_max (page 329) Galera 10 1.0
wsrep_local_send_queue_min (page 330) Galera 0 1.0
wsrep_local_state (page 330) Galera 4 1.0
wsrep_local_state_comment (page 330) Galera Synced 1.0
wsrep_local_state_uuid (page 331) Galera 1.0
wsrep_open_connections (page 331) Galera 3 3.24
wsrep_open_transactions (page 331) Galera 25 3.24
wsrep_protocol_version (page 332) Galera 4 1.0
wsrep_provider_name (page 332) MySQL Galera 1.0
wsrep_provider_vendor (page 333) MySQL 1.0
wsrep_provider_version (page 333) MySQL 1.0
wsrep_ready (page 333) MySQL ON 1.0
wsrep_received (page 334) Galera 17831 1.0
wsrep_received_bytes (page 334) Galera 6637093 1.0
wsrep_repl_data_bytes (page 334) Galera 265035226 1.0
wsrep_repl_keys (page 335) Galera 797399 1.0
wsrep_repl_keys_bytes (page 335) Galera 11203721 1.0
wsrep_repl_other_bytes (page 336) Galera 0 1.0
wsrep_replicated (page 336) Galera 16109 1.0
wsrep_replicated_bytes (page 336) Galera 6526788 1.0

wsrep_apply_oooe

How often applier started write-set applying out-of-order (parallelization efficiency).

Example Value 0.671120
Location Galera
Initial Version 1.0

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_apply_oooe';

(continues on next page)

8.4. Galera Status Variables 313

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

+------------------+----------+
| Variable_name | Value |
+------------------+----------+
| wsrep_apply_oooe | 0.671120 |
+------------------+----------+

wsrep_apply_oool

How often write-set was so slow to apply that write-set with higher seqno’s were applied earlier. Values closer to 0
refer to a greater gap between slow and fast write-sets.

Example Value 0.195248
Location Galera
Initial Version 1.0

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_apply_oool';

+------------------+----------+
| Variable_name | Value |
+------------------+----------+
| wsrep_apply_oool | 0.195248 |
+------------------+----------+

wsrep_apply_waits

Number of times an applier thread has waited for the applying order.

Example Value 13549
Location Galera
Initial Version 3.34,4.9

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_apply_waits';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| wsrep_apply_waits | 13549 |
+-------------------+-------+

wsrep_apply_window

Average distance between highest and lowest concurrently applied seqno.

Example Value 5.163966
Location Galera
Initial Version ???

314 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_apply_window';

+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
| wsrep_apply_window | 5.163966 |
+--------------------+----------+

wsrep_cert_deps_distance

Average distance between highest and lowest seqno value that can be possibly applied in parallel (potential degree of
parallelization). Note that this is an average measure. You will not see acute changes in this variable.

Example Value 23.888889
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_cert_deps_distance';

+--------------------------+----------+
| Variable_name | Value |
+--------------------------+----------+
| wsrep_cert_deps_distance | 23.88889 |
+--------------------------+----------+

wsrep_cert_index_size

The number of entries in the certification index.

Example Value 30936
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_cert_index_size';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| wsrep_cert_index_size | 30936 |
+------------------------+-------+

wsrep_cert_interval

Average number of transactions received while a transaction replicates.

8.4. Galera Status Variables 315

Galera Cluster Documentation, Releases 3.x and 4.x

Example Value 1.0
Location Galera
Initial Version ???

When a node replicates a write-set to the cluster, it can take some time before all the nodes in the cluster receive it. By
the time a given node receives, orders and commits a write-set, it may receive and potentially commit others, changing
the state of the database from when the write-set was sent and rendering the transaction inapplicable.

To prevent this, Galera Cluster checks write-sets against all write-sets within its certification interval for potential
conflicts. Using the wsrep_cert_interval (page 315) status variable, you can see the average number of transactions
with the certification interval.

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_cert_interval';

+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| wsrep_cert_interval | 1.0 |
+---------------------+-------+

This shows you the number of write-sets concurrently replicating to the cluster. In a fully synchronous cluster, with
one write-set replicating at a time, wsrep_cert_interval (page 315) returns a value of 1.0.

wsrep_cluster_conf_id

Total number of cluster membership changes happened.

Example Value 34
Location MySQL
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_cluster_conf_id';

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| wsrep_cluster_conf_id | 34 |
+-----------------------+-------+

wsrep_cluster_size

Current number of members in the cluster.

Example Value 3
Location MySQL
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

316 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

SHOW STATUS LIKE 'wsrep_cluster_size';

+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| wsrep_cluster_size | 15 |
+--------------------+-------+

wsrep_cluster_state_uuid

Provides the current State UUID. This is a unique identifier for the current state of the cluster and the sequence of
changes it undergoes.

Example Value e2c9a15e-5485-11e00900-6bbb637e7211
Location MySQL
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_cluster_state_uuid';

+--------------------------+--------------------------------------+
| Variable_name | Value |
+--------------------------+--------------------------------------+
| wsrep_cluster_state_uuid | e2c9a15e-5485-11e0-0800-6bbb637e7211 |
+--------------------------+--------------------------------------+

For more information on the state UUID, see wsrep API (page 18).

wsrep_cluster_status

Status of this cluster component. That is, whether the node is part of a PRIMARY or NON_PRIMARY component.

Example Value Primary
Location MySQL
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_cluster_status';

+----------------------+---------+
| Variable_name | Value |
+----------------------+---------+
| wsrep_cluster_status | Primary |
+----------------------+---------+

wsrep_cluster_weight

The total weight of the current members in the cluster. The value is counted as a sum of of pc.weight (page 304) of
the nodes in the current Primary Component.

8.4. Galera Status Variables 317

Galera Cluster Documentation, Releases 3.x and 4.x

Example Value 3
Location Galera
Initial Version 3.24

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_cluster_weight';

+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| wsrep_cluster_weight | 3 |
+----------------------+-------+

wsrep_commit_oooe

How often a transaction was committed out of order.

Example Value 0.000000
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_commit_oooe';

+-------------------+----------+
| Variable_name | Value |
+-------------------+----------+
| wsrep_commit_oooe | 0.000000 |
+-------------------+----------+

wsrep_commit_oool

No meaning.

Example Value 0.000000
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_commit_oool';

+-------------------+----------+
| Variable_name | Value |
+-------------------+----------+
| wsrep_commit_oool | 0.000000 |
+-------------------+----------+

318 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_commit_window

Average distance between highest and lowest concurrently committed seqno.

Example Value 0.000000
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_commit_window';

+---------------------+----------+
| Variable_name | Value |
+---------------------+----------+
| wsrep_commit_window | 0.000000 |
+---------------------+----------+

wsrep_connected

If the value is OFF, the node has not yet connected to any of the cluster components. This may be due to misconfigu-
ration. Check the error log for proper diagnostics.

Example Value ON
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_connected';

+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| wsrep_connected | ON |
+-----------------+-------+

wsrep_desync_count

Returns the number of operations in progress that require the node to temporarily desync from the cluster.

Example Value 0
Location Galera
Initial Version 3.8

Certain operations, such as DDL statements issued when wsrep_OSU_method (page 258) is set to Rolling Schema
Upgrade or when you enable wsrep_desync (page 246), cause the node to desync from the cluster. This status variable
shows how many of these operations are currently running on the node. When all of these operations complete, the
counter returns to its default value 0 and the node can sync back to the cluster.

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

8.4. Galera Status Variables 319

Galera Cluster Documentation, Releases 3.x and 4.x

SHOW STATUS LIKE 'wsrep_desync_count';

+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| wsrep_desync_count | 1 |
+--------------------+-------+

wsrep_evs_delayed

Provides a comma separated list of all the nodes this node has registered on its delayed list.

Example Value
Location Galera
Initial Version 3.8

The node listing format is as follows:

uuid:address:count

This refers to the UUID and IP address of the delayed node, with a count of the number of entries it has on the delayed
list.

wsrep_evs_evict_list

Lists the UUID’s of all nodes evicted from the cluster. Evicted nodes cannot rejoin the cluster until you restart their
mysqld processes.

Example Value
Location Galera
Initial Version 3.8

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_evs_evict_list';

+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| wsrep_evs_evict_list | |
+----------------------+-------+

wsrep_evs_repl_latency

This status variable provides figures for the replication latency on group communication. It measures latency from
the time point when a message is sent out to the time point when a message is received. As replication is a group
operation, this essentially gives you the slowest ACK and longest RTT in the cluster.

Example Value 0.00243433/0.144033/0.581963/0.215724/13
Location Galera
Initial Version 3.0

320 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_evs_repl_latency';

+------------------------+--+
| Variable_name | Value |
+------------------------+--+
| wsrep_evs_repl_latency | 0.00243433/0.144022/0.591963/0.215824/13 |
+------------------------+--+

The units are in seconds. The format of the return value is:

Minimum / Average / Maximum / Standard Deviation / Sample Size

This variable periodically resets. You can control the reset interval using the evs.stats_report_period (page 290)
parameter. The default value is 1 minute.

wsrep_evs_state

Shows the internal state of the EVS Protocol.

Example Value
Location Galera
Initial Version 3.8

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_evs_state';

+-----------------+-------------+
| Variable_name | Value |
+-----------------+-------------+
| wsrep_evs_state | OPERATIONAL |
+-----------------+-------------+

wsrep_flow_control_active

Whether flow control is currently active (replication paused) in the cluster.

Example Value false
Location Galera
Initial Version 3.31

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_flow_control_paused';

+---------------------------+----------+
| Variable_name | Value |
+---------------------------+----------+
| wsrep_flow_control_active | true |
+---------------------------+----------+

8.4. Galera Status Variables 321

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_flow_control_paused

The fraction of time since the last FLUSH STATUS command that replication was paused due to flow control.

Example Value 0.174353
Location Galera
Initial Version

Basically, this is how much the replica lag is slowing down the cluster.

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_flow_control_paused';

+---------------------------+----------+
| Variable_name | Value |
+---------------------------+----------+
| wsrep_flow_control_paused | 0.184353 |
+---------------------------+----------+

wsrep_flow_control_paused_ns

The total time spent in a paused state measured in nanoseconds.

Example Value 20222491180
Location Galera
Initial Version

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_flow_control_paused_ns';

+------------------------------+-------------+
| Variable_name | Value |
+------------------------------+-------------+
| wsrep_flow_control_paused_ns | 20222491180 |
+------------------------------+-------------+

wsrep_flow_control_recv

Returns the number of FC_PAUSE events the node has received, including those the node has sent. Unlike most status
variables, the counter for this one does not reset every time you run the query.

Example Value 11
Location Galera
Initial Version

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

322 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

SHOW STATUS LIKE 'wsrep_flow_control_recv';

+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| wsrep_flow_control_recv | 11 |
+-------------------------+-------+

wsrep_flow_control_requested

Whether the node has requested replication pause (received events queue too long).

Example Value false
Location Galera
Initial Version 3.31

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_flow_control_requested';

+------------------------------+-------+
| Variable_name | Value |
+------------------------------+-------+
| wsrep_flow_control_requested | true |
+------------------------------+-------+

wsrep_flow_control_sent

Returns the number of FC_PAUSE events the node has sent. Unlike most status variables, the counter for this one
does not reset every time you run the query.

Example Value 7
Location Galera
Initial Version

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_flow_control_sent';

+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| wsrep_flow_control_sent | 7 |
+-------------------------+-------+

wsrep_gmcast_segment

Returns cluster segment the node belongs to.

8.4. Galera Status Variables 323

Galera Cluster Documentation, Releases 3.x and 4.x

Example Value 3
Location Galera
Initial Version 3.31

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_gmcast_segment';

+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| wsrep_gmcast_segment | 0 |
+----------------------+-------+

wsrep_gcomm_uuid

Displays the group communications UUID.

Example Value 7e729708-605f-11e5-8ddd-8319a704b8c4
Location Galera
Initial Version 1.0

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_gcomm_uuid';

+------------------+--------------------------------------+
| Variable_name | Value |
+------------------+--------------------------------------+
| wsrep_gcomm_uuid | 7e729708-605f-11e5-8ddd-8319a704b8c4 |
+------------------+--------------------------------------+

wsrep_incoming_addresses

Comma-separated list of incoming server addresses in the cluster component.

Example Value 10.0.0.1:3306,10.0.0.2:3306,undefined
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_incoming_addresses';

+--------------------------+--------------------------------------+
| Variable_name | Value |
+--------------------------+--------------------------------------+
| wsrep_incoming_addresses | 10.0.0.1:3306,10.0.02:3306,undefined |
+--------------------------+--------------------------------------+

324 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_ist_receive_status

This variable displays the IST progress for the joiner node. If IST is running, the value is the percentage of transfer
completed. If IST is not running, the value is empty.

wsrep_last_committed

The sequence number, or seqno, of the last committed transaction. See wsrep API (page 18).

Example Value 409745
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_last_committed';

+----------------------+--------+
| Variable_name | Value |
+----------------------+--------+
| wsrep_last_committed | 409745 |
+----------------------+--------+

For more information, see wsrep API (page 18).

wsrep_local_bf_aborts

Total number of local transactions that were aborted by replica transactions while in execution.

Example Value 960
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_bf_aborts';

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| wsrep_local_bf_aborts | 960 |
+-----------------------+-------+

wsrep_local_cached_downto

The lowest sequence number, or seqno, in the write-set cache (GCache).

Example Value 18446744073709551615
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

8.4. Galera Status Variables 325

Galera Cluster Documentation, Releases 3.x and 4.x

SHOW STATUS LIKE 'wsrep_local_cached_downto';

+---------------------------+----------------------+
| Variable_name | Value |
+---------------------------+----------------------+
| wsrep_local_cached_downto | 18446744073709551615 |
+---------------------------+----------------------+

wsrep_local_cert_failures

Total number of local transactions that failed certification test.

Example Value 333
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_cert_failures';

+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| wsrep_local_cert_failures | 333 |
+---------------------------+-------+

wsrep_local_commits

Total number of local transactions committed.

Example Value 14981
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_commits';

+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| wsrep_local_commits | 14981 |
+---------------------+-------+

wsrep_local_index

This node index in the cluster (base 0).

Example Value 1
Location MySQL
Initial Version ???

326 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_index';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| wsrep_local_index | 1 |
+-------------------+-------+

wsrep_local_recv_queue

Current (instantaneous) length of the recv queue.

Example Value 0
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_recv_queue';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| wsrep_local_recv_queue | 0 |
+------------------------+-------+

wsrep_local_recv_queue_avg

Recv queue length averaged over interval since the last FLUSH STATUS command. Values considerably larger than
0.0 mean that the node cannot apply write-sets as fast as they are received and will generate a lot of replication
throttling.

Example Value 3.348452
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_recv_queue_avg';

+----------------------------+----------+
| Variable_name | Value |
+----------------------------+----------+
| wsrep_local_recv_queue_avg | 3.348452 |
+----------------------------+----------+

wsrep_local_recv_queue_max

The maximum length of the recv queue since the last FLUSH STATUS command.

8.4. Galera Status Variables 327

Galera Cluster Documentation, Releases 3.x and 4.x

Example Value 10
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_recv_queue_max';

+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| wsrep_local_recv_queue_max | 10 |
+----------------------------+-------+

wsrep_local_recv_queue_min

The minimum length of the recv queue since the last FLUSH STATUS command.

Example Value 0
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_recv_queue_min';

+-----------------------------+-------+
| Variable_name | Value |
+-----------------------------+-------+
| wsrep_local_recev_queue_min | 0 |
+-----------------------------+-------+

wsrep_local_replays

Total number of transaction replays due to asymmetric lock granularity.

Example Value 0
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_replays';

+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| wsrep_lcoal_replays | 0 |
+---------------------+-------+

328 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_local_send_queue

Current (instantaneous) length of the send queue.

Example Value 1
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_send_queue';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| wsrep_local_send_queue | 1 |
+------------------------+-------+

wsrep_local_send_queue_avg

Send queue length averaged over time since the last FLUSH STATUS command. Values considerably larger than 0.0
indicate replication throttling or network throughput issue.

Example Value 0.145000
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_send_queue_avg';

+----------------------------+----------+
| Variable_name | Value |
+----------------------------+----------+
| wsrep_local_send_queue_avg | 0.145000 |
+----------------------------+----------+

wsrep_local_send_queue_max

The maximum length of the send queue since the last FLUSH STATUS command.

Example Value 10
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_send_queue_max';

+----------------------------+-------+
| Variable_name | Value |

(continues on next page)

8.4. Galera Status Variables 329

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

+----------------------------+-------+
| wsrep_local_send_queue_max | 10 |
+----------------------------+-------+

wsrep_local_send_queue_min

The minimum length of the send queue since the last FLUSH STATUS command.

Example Value 0
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_send_queue_min';

+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| wsrep_local_send_queue_min | 0 |
+----------------------------+-------+

wsrep_local_state

Internal Galera Cluster FSM state number.

Example Value 4
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_state';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| wsrep_local_state | 4 |
+-------------------+-------+

For more information on the possible node states, see Node State Changes (page 26).

wsrep_local_state_comment

Human-readable explanation of the state.

Example Value Synced
Location Galera
Initial Version ???

330 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_state_comment';

+---------------------------+--------+
| Variable_name | Value |
+---------------------------+--------+
| wsrep_local_state_comment | Synced |
+---------------------------+--------+

wsrep_local_state_uuid

The UUID of the state stored on this node.

Example Value e2c9a15e-5385-11e0-0800-6bbb637e7211
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_local_state_uuid';

+------------------------+--------------------------------------+
| Variable_name | Value |
+------------------------+--------------------------------------+
| wsrep_local_state_uuid | e2c9a15e-5485-11e0-0800-6bbb637e7211 |
+------------------------+--------------------------------------+

For more information on the state UUID, see wsrep API (page 18).

wsrep_open_connections

The number of open connection objects inside the wsrep provider.

Example Value 1
Location Galera
Initial Version 3.24

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_open_connections';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| wsrep_open_connections | 1 |
+------------------------+-------+

wsrep_open_transactions

The number of locally running transactions which have been registered inside the wsrep provider. This means trans-
actions which have made operations which have caused write set population to happen. Transactions which are read
only are not counted.

8.4. Galera Status Variables 331

Galera Cluster Documentation, Releases 3.x and 4.x

Example Value 6
Location Galera
Initial Version 3.24

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_open_transactions';

+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| wsrep_open_transactions | 6 |
+-------------------------+-------+

wsrep_protocol_version

The version of the wsrep Protocol used.

Example Value 4
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_protocol_version';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| wsrep_protocol_version | 4 |
+------------------------+-------+

The following table summarizes protocol versions and the galera version in which they were introduced:

Protocol version Galera version
11 26.4.17
10 26.4.1
9 25.3.24
8 25.3.23
7 25.3.9
6 25.3.6
5 25.3.5

wsrep_provider_name

The name of the wsrep Provider.

Example Value Galera
Location MySQL
Initial Version ???

332 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_provider_name';

+---------------------+--------+
| Variable_name | Value |
+---------------------+--------+
| wsrep_provider_name | Galera |
+---------------------+--------+

wsrep_provider_vendor

The name of the wsrep Provider vendor.

Example Value Codership Oy <info@codership.com>
Location MySQL
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_provider_vendor';

+-----------------------+-----------------------------------+
| Variable_name | Value |
+-----------------------+-----------------------------------+
| wsrep_provider_vendor | Codership Oy <info@codership.com> |
+-----------------------+-----------------------------------+

wsrep_provider_version

The name of the wsrep Provider version string.

Example Value 25.3.5-wheezy(rXXXX)
Location MySQL
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_provider_version';

+------------------------+----------------------+
| Variable_name | Value |
+------------------------+----------------------+
| wsrep_provider_version | 25.3.5-wheezy(rXXXX) |
+------------------------+----------------------+

wsrep_ready

Whether the server is ready to accept queries. If this status is OFF, almost all of the queries will fail with:

ERROR 1047 (08S01) Unknown Command

8.4. Galera Status Variables 333

Galera Cluster Documentation, Releases 3.x and 4.x

unless the wsrep_on session variable is set to 0.

Example Value ON
Location MySQL
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_ready';

+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| wsrep_ready | ON |
+---------------+-------+

wsrep_received

Total number of write-sets received from other nodes.

Example Value 17831
Location MySQL
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_received';

+----------------+-------+
| Variable_name | Value |
+----------------+-------+
| wsrep_received | 17831 |
+----------------+-------+

wsrep_received_bytes

Total size of write-sets received from other nodes.

Example Value 6637093
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_received_bytes';

+----------------------+---------+
| Variable_name | Value |
+----------------------+---------+
| wsrep_received_bytes | 6637093 |
+----------------------+---------+

334 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_repl_data_bytes

Total size of data replicated.

Example Value 6526788
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_repl_data_bytes';

+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| wsrep_repl_data_bytes | 6526788 |
+-----------------------+---------+

wsrep_repl_keys

Total number of keys replicated.

Example Value 797399
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_repl_keys';

+-----------------+--------+
| Variable_name | Value |
+-----------------+--------+
| wsrep_repl_keys | 797399 |
+-----------------+--------+

wsrep_repl_keys_bytes

Total size of keys replicated.

Example Value 11203721
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_repl_keys_bytes';

+-----------------------+----------+
| Variable_name | Value |
+-----------------------+----------+

(continues on next page)

8.4. Galera Status Variables 335

Galera Cluster Documentation, Releases 3.x and 4.x

(continued from previous page)

| wsrep_repl_keys_bytes | 11203721 |
+-----------------------+----------+

wsrep_repl_other_bytes

Total size of other bits replicated.

Example Value 0
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_repl_other_bytes';

+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| wsrep_repl_other_bytes | 0 |
+------------------------+-------+

wsrep_replicated

Total number of write-sets replicated (sent to other nodes).

Example Value 16109
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

SHOW STATUS LIKE 'wsrep_replicated';

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| wsrep_replicated | 16109 |
+------------------+-------+

wsrep_replicated_bytes

Total size of write-sets replicated.

Example Value 6526788
Location Galera
Initial Version ???

To retrieve the value of this status variable, execute the SHOW STATUS statement like so:

336 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

SHOW STATUS LIKE 'wsrep_replicated_bytes';

+------------------------+---------+
| Variable_name | Value |
+------------------------+---------+
| wsrep_replicated_bytes | 6526788 |
+------------------------+---------+

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

8.5 XtraBackup-v2 Parameters

When using xtrabackup-v2 as your State Snapshot Transfer method, you can fine tune how the script operates
using the [sst] unit in the my.cnf configuration file.

[mysqld]
wsrep_sst_method=xtrabackup-v2

[sst]
compressor="gzip"
decompressor="gzip -dc"
rebuild=ON
compact=ON
encrypt=3
tkey="/path/to/key.pem"
tcert="/path/to/cert.pem"
tca="/path/to/ca.pem"

Bear in mind, some XtraBackup parameters require that you match the configuration on donor and joiner nodes, (as
designated in the table below).

8.5. XtraBackup-v2 Parameters 337

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Option Default Match
compressor (page 338)
cpat (page 339) 0
decompressor (page 339)
encrypt (page 339) 0 Yes
encrypt-algo (page 340)
progress (page 340)
rebuild (page 340) 0
rlimit (page 341)
sst_special_dirs (page 341) 1
sockopt (page 341)
streamfmt (page 342) xbstream Yes
tca (page 342)
tcert (page 342)
time (page 343) 0
transferfmt (page 343) socat Yes
joiner_timeout (page 343) 60
donor_timeout (page 344) 10

compressor

Defines the compression utility the Donor Node uses to compress the state transfer.

System Variable Name: compressor
Match: Yes

Permitted Values Type: String
Default Value:

This parameter defines whether the donor node performs compression on the state transfer stream. It also defines what
compression utility it uses to perform the operation. You can use any compression utility which works on a stream,
such as gzip or pigz. Given that the Joiner Node must decompress the state transfer before attempting to read it,
you must match this parameter with the decompressor (page 339) parameter, using the appropriate flags for each.

compression="gzip"

compact

Defines whether the joiner node performs compaction when rebuilding indexes after applying a State Snapshot Trans-
fer.

System Variable Name: compact
Match: No

Permitted Values Type: Boolean
Default Value: OFF

This parameter operates on the joiner node with the rebuild (page 340) parameter. When enabled, the node performs
compaction when rebuilding indexes after applying a state transfer.

338 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

rebuild=ON
compact=ON

cpat

Defines what files to exclude from the clean up from the datadir during state transfers.

System Variable Name: cpat
Match: No

Permitted Values Type: String
Default Value: See below

When the donor node begins a State Snapshot Transfer, it cleans up various files from the datadir. This ensures that
the joiner node can cleanly apply the state transfer. With this parameter, you can define what files you want the node
to exclude from being deleted, before the state transfer.

cpat='.*\\.pem$\\|.*init\\.ok$\\|.*galera\\.cache$\\|.*sst_in_progress$\\|.*\\.
→˓sst$\\|.*gvwstate\\.dat$\\|.*grastate\\.dat$\\|.*\\.err$\\|.*\\.log$\\|.*RPM_
→˓UPGRADE_MARKER$\\|.*RPM_UPGRADE_HISTORY$'

decompressor

Defines the decompression utility the joiner node uses to decompress the state transfer.

System Variable Name: decompressor
Match: No

Permitted Values Type: String
Default Value:

This parameter defines whether the joiner node performs decompression on the state transfer stream. It also defines
what decompression utility it uses to perform the operation. You can use any compression utility which works on a
stream, such as gzip or pigz. Given that the donor node must compress the state transfer before sending it, you
must match this parameter with the compressor (page 338) parameter, using the appropriate flags for each.

decompressor="gzip -dc"

encrypt

Defines whether the node uses SSL encryption for XtraBackup and what kind of encryption it uses.

System Variable Name: encrypt
Match: Yes

Permitted Values Type: Integer
Default Value: 0

This parameter determines the type of SSL encryption the node uses when sending state transfers through xtrabackup.
The recommended type is 2 when using the cluster over WAN.

8.5. XtraBackup-v2 Parameters 339

Galera Cluster Documentation, Releases 3.x and 4.x

Value Description
0 No encryption.
1 The node encrypts State Snapshot Transfers through XtraBackup.
2 The node encrypts State Snapshot Transfers through OpenSSL, using Socat.
3 The node encrypts State Snapshot Transfers through the key and certificate files implemented for Galera

Cluster.

encrypt=3
tkey="/path/to/key.pem"
tcert="/path/to/cert.pem"
tca="/path/to/ca.pem"

encrypt-algo

Defines the SSL encryption type the node uses for XtraBackup state transfers.

System Variable Name: encrypt-algo
Match: No

Permitted Values Type: Integer
Default Value: 0

When using the encrypt (page 339) parameter in both the [xtrabackup] and [sst] units, there is a potential
issue in it having different meanings according to the unit under which it occurs. That is, in [xtrabackup], it turns
encryption on while in [sst] it both turns it on as specifies the algorithm.

In the event that you need to clarify the meaning, this parameter allows you to define the encryption algorithm sepa-
rately from turning encryption on. It is only read in the event that encrypt (page 339) is set to 1

encrypt=1
encrypt-algo=3

progress

Defines whether where the node reports State Snapshot Transfer progress.

System Variable Name: progress
Match: No

Permitted Values Type: String
Default Value:
Valid Values: 1; /path/to/file

When you set this parameter, the node reports progress on XtraBackup progress in state transfers. If you set the value
to 1, the node makes these reports to the database server stderr. If you set the value to a file path, it writes the progress
to that file.

Note: Keep in mind, that a 0 value is invalid. If you want to disable this parameter, delete or comment it out.

progress="/var/log/mysql/xtrabackup-progress.log"

340 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

rebuild

Defines whether the joiner node rebuilds indexes during a State Snapshot Transfer.

System Variable Name: rebuild
Match: No

Permitted Values Type: Boolean
Default Value: OFF

This parameter operates on the joiner node. When enabled, the node rebuilds indexes when applying the state transfer.
Bear in mind, this operation is separate from compaction. Due to Bug #1192834, it is recommended that you use this
parameter with compact (page 338).

rebuild=ON
compact=ON

rlimit

Defines the rate limit for the donor node.

System Variable Name: rlimit
Match: No

Permitted Values Type: Integer
Default Value:

This parameter allows you to definite the rate-limit the donor node. This allows you to keep state transfers from
blocking regular cluster operations.

rlimit=300M

sst_special_dirs

Defines whether the node uses special InnoDB home and log directories.

System Variable Name: sst_special_dirs
Match: No

Permitted Values Type: Boolean
Default Value: OFF

This parameter enables support for innodb_data_home_dir and innodb_log_home_dir parameters for
XtraBackup. It requires that you define innodb_data_home_dir and innodb_log_group_home_dir in
the [mysqld] unit.

[mysqld]
innodb_data_home_dir="/var/mysqld/innodb"
innodb_log_group_home_dir="/var/log/innodb"
wsrep_sst_method="xtrabackup-v2"

[sst]
sst_special_dirs=TRUE

8.5. XtraBackup-v2 Parameters 341

https://bugs.launchpad.net/percona-xtrabackup/+bug/1192834

Galera Cluster Documentation, Releases 3.x and 4.x

sockopt

Defines socket options.

System Variable Name: sockopt
Match: No

Permitted Values Type: String
Default Value:

This parameter allows you to define one or more socket options for XtraBackup using the Socat transfer format.

streamfmt

Defines the stream formatting utility.

System Variable Name: streamfmt
Match: Yes

Permitted Values Type: String
Default Value: xbstream
Valid Values: tar; xbstream

This parameter defines the utility the node uses to archive the node state before the transfer is sent and how to unarchive
the state transfers that is receives. There are two methods available: tar and xbstream. Given that the receiving
node needs to know how to read the stream, it is necessary that both nodes use the same values for this parameter.

The default and recommended utility is xbstream given that it supports encryption, compression, parallel streaming,
incremental backups and compaction. tar does not support these features.

streamfmt='xbstream'

tca

Defines the Certificate Authority (CA) to use in SSL encryption.

System Variable Name: tca
Match: No

Permitted Values Type: Path
Default Value:

This parameter defines the Certificate Authority (CA) file that the node uses with XtraBackup state transfers. In order
to use SSL encryption with XtraBackup, you must configure the transferfmt (page 343) parameter to use socat.

For more information on using Socat with encryption, see Securing Traffic between Two Socat Instances using SSL.

transferfmt="socat"
tca="/path/to/ca.pem"

tcert

Defines the certificate to use in SSL encryption.

342 Chapter 8. Reference

https://www.dest-unreach.org/socat/doc/socat-openssltunnel.html

Galera Cluster Documentation, Releases 3.x and 4.x

System Variable Name: tcert
Match: No

Permitted Values Type: String
Default Value:

This parameter defines the SSL certificate file that the node uses with SSL encryption on XtraBackup state transfers. In
order to use SSL encryption with XtraBackup, you must configure the transferfmt (page 343) parameter to use Socat.

For more information on using Socat with encryption, see Securing Traffic between Two Socat Instances using SSL.

transferfmt="socat"
tcert="/path/to/cert.pem"

time

Defines whether XtraBackup instruments key stages in the backup and restore process for state transfers.

System Variable Name: time
Match: No

Permitted Values Type: Boolean
Default Value: OFF

This parameter instruments key stages of the backup and restore process for state transfers.

time=ON

transferfmt

Defines the transfer stream utility.

System Variable Name: transferfmt
Match: YesNo”

Permitted Values Type: String
Default Value: socat
Valid Values: socat; nc

This parameter defines the utility that the node uses to format transfers sent from donor to joiner nodes. There are
two methods supported: Socat and nc. Given that the receiving node needs to know how to interpret the transfer, it is
necessary that both nodes use the same values for this parameter.

The default and recommended utility is Socat, given that it allows for socket options, such as transfer buffer size. For
more information, see the socat Documentation.

transferfmt="socat"

joiner_timeout

How soon joiner should timeout waiting for SST (seconds).

8.5. XtraBackup-v2 Parameters 343

https://www.dest-unreach.org/socat/doc/socat-openssltunnel.html
https://www.dest-unreach.org/socat/doc/socat.html

Galera Cluster Documentation, Releases 3.x and 4.x

System Variable Name: joiner_timeout
Match: No

Permitted Values Type: Integer
Default Value: 60

This parameter determines the initial timeout in seconds for the joiner to receive the first packet in a State Snapshot
Transfer. This keeps the joiner node from hanging in the event that the donor node crashes while starting the operation.

joiner_timeout=120

donor_timeout

How soon donor should timeout on connection to joiner (seconds).

System Variable Name: donor_timeout
Match: No

Permitted Values Type: Integer
Default Value: 10

This parameter determines how soon the donor should timeout on connection to joiner and return to normal operation
in case the joiner turns to be unresponsive.

donor_timeout=5

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Configuration Options (page 347)

• Destination Policies (page 128)

• LISTEN_ADDR (page 346)

• OTHER_OPTIONS (page 346)

• –watchdog (page 353)

• Home

• Docs (page 1)

• KB

• Training

344 Chapter 8. Reference

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• FAQ

8.6 Galera Load Balancer Parameters

Galera Load Balancer provides simple TCP connection balancing developed with scalability and performance in mind.
It draws on Pen for inspiration, but its functionality is limited to only balancing TCP connections.

It can be run either through the service command or the command-line interface of glbd. Configuration for Galera
Load Balancer depends on which you use to run it.

Configuration Parameters

When Galera Load Balancer starts as a system service, it reads the glbd.cfg configuration file for default parameters
you want to use. Only the LISTEN_ADDR (page 346) parameter is mandatory.

Parameter Default Configuration
CONTROL_ADDR (page 345) 127.0.0.1:8011
CONTROL_FIFO (page 345) /var/run/glbd.fifo
DEFAULT_TARGETS (page 346) 127.0.0.1:80 10.0.1:80 10.0.0.2:80
LISTEN_ADDR (page 346) 8010
MAX_CONN (page 346)
OTHER_OPTIONS (page 346)
THREADS (page 347) 2

CONTROL_ADDR

Defines the IP address and port for controlling connections.

Command-line Argument –control (page 347)
Default Configuration 127.0.0.1:8011
Mandatory Parameter No

This is an optional parameter. Use it to define the server used in controlling client connections. When using this
parameter you must define the port. In the event that you do not define this parameter, Galera Load Balancer does not
open the relevant socket.

CONTROL_ADDR="127.0.0.1:8011"

CONTROL_FIFO

Defines the path to the FIFO control file.

Command-line Argument –fifo (page 349)
Default Configuration /var/run/glbd.fifo
Mandatory Parameter No

This is an optional parameter. It defines the path to the FIFO control file as is always opened. In the event that there is
already a file at this path, Galera Load Balancer fails to start.

8.6. Galera Load Balancer Parameters 345

Galera Cluster Documentation, Releases 3.x and 4.x

CONTROL_FIFO="/var/run/glbd.fifo"

DEFAULT_TARGETS

Defines the IP addresses and ports of the destination servers.

Default Configuration 127.0.0.1:80 10.0.0.1:80 10.0.0.2:80:2
Mandatory Parameter No

This parameter defines that IP addresses that Galera Load Balancer uses as destination servers. Specifically, in this
case the Galera Cluster nodes that it routes application traffic onto.

DEFAULT_TARGETS="192.168.1.1 192.168.1.2 192.168.1.3"

LISTEN_ADDR

Defines the IP address and port used for client connections.

Default Configuration 8010
Mandatory Parameter Yes

This parameter defines the IP address and port that Galera Load Balancer listens on for incoming client connections.
The IP address is optional, the port mandatory. In the event that you define a port without an IP address, Galera Load
Balancer listens on that port for all available network interfaces.

LISTEN_ADDR="8010"

MAX_CONN

Defines the maximum allowed client connections.

Default Configuration –max_conn (page 350)
Mandatory Parameter No

This parameter defines the maximum number of client connections that you want to allow to Galera Load Balancer. It
modifies the system open files limit to accommodate at least this many connections, provided sufficient privileges. It
is recommend that you define this parameter if you expect the number of client connections to exceed five hundred.

MAX_CONN="135"

This option defines the maximum number of client connections that you want allow to Galera Load Balancer. Bear in
mind, that it can be operating system dependent.

OTHER_OPTIONS

This parameter defines various additional options that you would like to pass to Galera Load Balancer, such as a
destination selection policy or Watchdog configurations. Use the same syntax as you would for the command-line
arguments. There is no default configuration, and this is not a mandatory parameter. For more information on the
available options, see Configuration Options (page 347).

346 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

OTHER_OPTIONS="--random --watchdog exec:'mysql -utest -ptestpass' --discover"

THREADS

Defines the number of threads you want to use.

Default Configuration –threads (page 352)
Mandatory Parameter No

This parameter allows you to define the number of threads (that is, connection pools), which you want to allow Galera
Load Balancer to use. It is advisable that you have at least a few per CPU core.

THREADS="6"

Configuration Options

When Galera Load Balancer starts as a daemon process, through the /sbin/glbd command, it allows you to pass a
number of command-line arguments to configure how it operates. It uses the following syntax:

/usr/local/sbin/glbd [OPTIONS] LISTEN_ADDRESS [DESTINATION_LIST]

In the event that you would like to set any of these options when you run Galera Load Balancer as a service, you can
define them through the OTHER_OPTIONS (page 346) parameter.

Long Argument Short Type Parameter
–control (page 347) -c IP address CONTROL_ADDR (page 345)
–daemon (page 348) -d Boolean
–defer-accept (page 348) -a Boolean
–discover (page 348) -D Boolean
–extra (page 349) -x Decimal
–fifo (page 349) -f File Path CONTROL_FIFO (page 345)
–interval (page 349) -i Decimal
–keepalive (page 349) -K Boolean
–latency (page 350) -L Integer
–linger (page 350) -l Boolean
–max_conn (page 350) -m Integer MAX_CONN (page 346)
–nodelay (page 351) -n Boolean
–random (page 351) -r Boolean
–round (page 351) -b Boolean
–single (page 352) -S Boolean
–source (page 352) -s Boolean
–threads (page 352) -t Integer THREADS (page 347)
–top (page 353) -T Boolean
–verbose (page 353) -v Boolean
–watchdog (page 353) -w String

--control

Defines the IP address and port for control connections.

8.6. Galera Load Balancer Parameters 347

Galera Cluster Documentation, Releases 3.x and 4.x

Short Argument -c
Syntax --control [IP|Hostname:]port
Type IP Address
Configuration Parameter CONTROL_ADDR (page 345)

For more information on defining the controlling connections, see the CONTROL_ADDR (page 345) parameter.

glbd --control 192.168.1.1:80 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--daemon

Defines whether you want Galera Load Balancer to run as a daemon process.

Short Argument -d
Syntax --daemon
Type Boolean

This option defines whether you want to start glbd as a daemon process. That is, if you want it to run in the
background, instead of claiming the current terminal session.

glbd --daemon 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--defer-accept

Enables TCP deferred acceptance on the listening socket.

Short Argument -a
Syntax --defer-accept
Type Boolean

Enabling TCP_DEFER_ACCEPT allows Galera Load Balancer to awaken only when data arrives on the listening
socket. It is disabled by default.

glbd --defer-accept 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--discover

Defines whether you want to use watchdog results to discover and set new destinations.

Short Argument -D
Syntax --discover
Type Boolean

When you define the –watchdog (page 353) option, this option defines whether Galera Load Balancer uses the re-
turn value in discovering and setting new addresses for destination servers. For instance, after querying for the ws-
rep_cluster_address (page 241) parameter.

348 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

glbd --discover -w exec:"mysql.sh -utest -ptestpass" 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--extra

Defines whether you want to perform an extra destination poll on connection attempts.

Short Argument -x
Syntax --extra D.DDD
Type Decimal

This option defines whether and when you want Galera Load Balancer to perform an additional destination poll on
connection attempts. The given value indicates how many seconds after the previous poll that you want it to run the
extra poll. By default, the extra polling feature is disabled.

glbd --extra 1.35 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--fifo

Defines the path to the FIFO control file.

Short Argument -f
Syntax --fifo /path/to/glbd.fifo
Type File Path
Configuration Parameter CONTROL_FIFO (page 345)

For more information on using FIFO control files, see the CONTROL_FIFO (page 345) parameter.

glbd --fifo /var/run/glbd.fifo 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--interval

Defines how often to probe destinations for liveliness.

Short Argument -i
Syntax --interval D.DDD
Type Decimal

This option defines how often Galera Load Balancer checks destination servers for liveliness. It uses values given in
seconds. By default, it checks liveliness every second.

glbd --interval 2.013 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

8.6. Galera Load Balancer Parameters 349

Galera Cluster Documentation, Releases 3.x and 4.x

--keepalive

Defines whether you want to disable the SO_KEEPALIVE socket option on server-side sockets.

Short Argument -K
Syntax --keepalive
Type Boolean

Linux systems feature the socket option SO_KEEPALIVE, which causes the server to send packets to a remote
system in order to maintain the client connection with the destination server. This option allows you to disable
SO_KEEPALIVE on server-side sockets. It allows SO_KEEPALIVE by default.

glbd --keepalive 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--latency

Defines the number of samples to take in calculating latency for watchdog.

Short Argument -L
Syntax --latency N
Type Integer

When the Watchdog module tests a destination server to calculate latency, it sends a number of packets through to
measure its responsiveness. This option configures how many packets it sends in sampling latency.

glbd --latency 25 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--linger

Defines whether Galera Load Balancer disables sockets lingering after they are closed.

Short Argument -l
Syntax --linger
Type Boolean

When Galera Load Balancer sends the close() command, occasionally sockets linger in a TIME_WAIT state. This
option defines whether or not you want Galera Load Balancer to disable lingering sockets.

glbd --linger 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--max_conn

Defines the maximum allowed client connections.

Short Argument -m
Syntax --max_conn N
Type Integer

350 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

For more information on defining the maximum client connections, see the MAX_CONN (page 346) parameter.

glbd --max_conn 125 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--nodelay

Defines whether it disables the TCP no-delay socket option.

Short Argument -n
Syntax --nodelay
Type Boolean

Under normal operation, TCP connections automatically concatenate small packets into larger frames through the
Nagle algorithm. In the event that you want Galera Load Balancer to disable this feature, this option causes it to open
TCP connections with the TCP_NODELAY feature.

glbd --nodelay 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--random

Defines the destination selection policy as Random.

Short Argument -r
Syntax --random
Type Boolean

The destination selection policy determines how Galera Load Balancer determines which servers to route traffic to.
When you set the policy to Random, it randomly chooses a destination from the pool of available servers. You can
enable this feature by default through the OTHER_OPTIONS (page 346) parameter.

For more information on other policies, see Destination Selection Policies (page 128).

glbd --random 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--round

Defines the destination selection policy as Round Robin.

Short Argument -b
Syntax --round
Type Boolean

The destination selection policy determines how Galera Load Balancer determines which servers to route traffic to.
When you set the policy to Round Robin, it directs new connections to the next server in a circular order list. You can
enable this feature by default through the OTHER_OPTIONS (page 346) parameter.

For more information on other policies, see Destination Selection Policies (page 128).

8.6. Galera Load Balancer Parameters 351

Galera Cluster Documentation, Releases 3.x and 4.x

glbd --round 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--single

Defines the destination selection policy as Single.

Short Argument -S
Syntax --single
Type Boolean

The destination selection policy determines how Galera Load Balancer determines which servers to route traffic to.

When you set the policy to Single, all connections route to the server with the highest weight value. You can enable
this by default through the OTHER_OPTIONS (page 346) parameter.

glbd --single 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--source

Defines the destination selection policy as Source Tracking.

Short Argument -s
Syntax --source
Type Boolean

The destination selection policy determines how Galera Load Balancer determines which servers to route traffic to.
When you set the policy to Source Tracking, connections that originate from one address are routed to the same
destination. That is, you can ensure that certain IP addresses always route to the same destination server. You can
enable this by default through the OTHER_OPTIONS (page 346) parameter.

Bear in mind, there are some limitations to this selection policy. When the destination list changes, the destination
choice for new connections changes as well, while established connections remain in place. Additionally, when a
destination is marked as unavailable, all connections that would route to it fail over to another, randomly chosen
destination. When the original target becomes available again, routing to it for new connections resumes. In other
words, Source Tracking works best with short-lived connections.

For more information on other policies, see Destination Selection Policies (page 128).

glbd --source 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--threads

Defines the number of threads that you want to use.

Short Argument -t
Syntax --threads N
Type Integer

352 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

For more information on threading in Galera Load Balancer, see THREADS (page 347).

glbd --threads 6 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--top

Enables balancing to top weights only.

Short Argument -T
Syntax --top
Type Boolean

This option restricts all balancing policies to a subset of destination servers with the top weight. For instance, if you
have servers with weights 1, 2 and 3, balancing occurs only on servers with weight 3, while they remain available.

glbd --top 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--verbose

Defines whether you want Galera Load Balancer to run as verbose.

Short Argument -v
Syntax --verbose
Type Boolean

This option enables verbose output for Galera Load Balancer, which you may find useful for debugging purposes.

glbd --verbose 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

--watchdog

Defines specifications for watchdog operations.

Short Argument -w
Syntax --watchdog SPEC_STR
Type String

Under normal operation, Galera Load Balancer checks destination availability by attempting to establish a TCP con-
nection to the server. For most use cases, this is insufficient. If you want to establish a connection with web server,
you need to know if it is able to serve web pages. If you want to establish a connection with a database server, you
need to know if it is able to execute queries. TCP connections do not provide that kind of information.

The Watchdog module implements asynchronous monitoring of destination servers through back-ends designed to
service availability. This option allows you to enable it by defining the back-end ID string, optionally followed by a
colon and the configuration options.

8.6. Galera Load Balancer Parameters 353

Galera Cluster Documentation, Releases 3.x and 4.x

glbd -w exec:"mysql.sh -utest -ptestpass" 3306 \
192.168.1.1 192.168.1.2 192.168.1.3

This initializes the exec back-end to execute external programs. It runs the mysql.sh script on each destination
server in order to determine its availability. You can find the mysql.sh in the Galera Load Balancer build directory,
under files/.

Related Documents

• Configuration Options (page 347)

• Destination Policies (page 128)

• LISTEN_ADDR (page 346)

• OTHER_OPTIONS (page 346)

• –watchdog (page 353)

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

Related Documents

• Galera Installation

• Home

• Docs (page 1)

• KB

• Training

• FAQ

8.7 Versioning Information

Galera Cluster for MySQL is available in binary software packages for several different Linux distributions, as well as
in source code for other distributions and other Unix-like operating systems, such as FreeBSD and Solaris.

For Linux distributions, binary packages in 32-bit and 64-bit for both the MySQL database server with the wsrep API
patch and the Galera Replication Plugin are available from the Codership Repository. These include support for:

• Red Hat Enterprise Linux

• CentOS

• Debian

354 Chapter 8. Reference

https://galeracluster.com
https://releases.galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

• Ubuntu

By installing and configuring the Codership Repository on any of these systems, you can install and update Galera
Cluster for MySQL through your package manager. In the event that you use a distribution of Linux that is not
supported, or if you use another Unix-like operating system, source files are available on GitHub, at:

• MySQL Server with the wsrep API patch.

• Galera Replication Plugin.

• glb, the Galera Load Balancer.

For users of FreeBSD and similar operating systems, the Galera Replication Plugin is also available in ports, at /usr/
ports/databases/galera, which corrects for certain compatibility issues with Linux dependencies.

For more information on the installation process, see Galera Installation.

Release Numbering Schemes

Software packages for Galera Cluster have their own release numbering schemas. There are two schemas to consider
in version numbering:

• Galera wsrep Provider Also, referred to as the Galera Replication Plugin. The wsrep Provider uses the fol-
lowing versioning schema: <wsrep API main version>.<Galera version>. For example, release
24.2.4 indicates wsrep API version 24.x.x with Galera wsrep Provider version 2.4.

• MySQL Server with wsrep API patch The second versioning schema relates to the database server. Here,
the MySQL server uses the following versioning schema <MySQL server version>-<wsrep API
version>. For example, release 5.5.29-23.7.3 indicates a MySQL database server in 5.5.29 with wsrep API
version 23.7.3.

For instances of Galera Cluster that use the MariaDB database server, consult the MariaDB documentation for version
and release information.

See also Galera Cluster and MySQL Database Server Versions.

Third-party Implementations of Galera Cluster

In addition to the Galera Cluster for MySQL, the reference implementation from Codership Oy, there is a third-party
implementation of Galera Cluster - MariaDB Galera Cluster which uses the Galera library for the replication imple-
mentation. To interface with the Galera Replication Plugin, MariaDB has been enhanced to support the replication
API definition in the wsrep API project. Additionally, releases of MariaDB Server starting from version 10.1 on are
packaged with Galera Cluster already included. For more information, see What is MariaDB Galera Cluster.

Related Documents

• Galera Installation

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

8.7. Versioning Information 355

https://github.com/codership/mysql-wsrep
https://github.com/codership/galera
https://github.com/codership/glb
https://mariadb.com
https://mariadb.com/kb/en/mariadb/what-is-mariadb-galera-cluster/

Galera Cluster Documentation, Releases 3.x and 4.x

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

8.8 Legal Notice

Copyright (C) 2013 Codership Oy <info@codership.com>

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of
this license, visit Creative Commons Attribution-ShareAlike 3.0 Unported License.

Permission is granted to copy, distribute and modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Text, and no Back-Cover Text. To view a copy of that license, visit GNU Free Documentation License.

Any trademarks, logos, and service marks in this document are the property of Codership Oy or other third parties. You
are not permitted to use these marks without the prior written consent of Codership Oy or such appropriate third party.
Codership, Galera Cluster for MySQL, and the Codership logo are trademarks or registered trademarks of Codership.

All Materials in this document are (and shall continue to be) owned exclusively by Codership Oy or other respective
third party owners and are protected under applicable copyrights, patents, trademarks, trade dress and other proprietary
rights. Under no circumstances will any ownership rights or other interest in any materials be acquired by or through
access or use of the materials. All rights, title and interest not expressly granted is reserved by Codership Oy.

• “MySQL” is a registered trademark of Oracle Corporation.

• “Percona XtraDB Cluster” and “Percona Server” are registered trademarks of Percona LLC.

• “MariaDB” and “MariaDB Galera Cluster” are registered trademarks of MariaDB Ab.

The Library

• Documentation (page 1)

• Knowledge Base

• Training

• Training Courses

• Tutorial Articles

• Training Videos

• FAQ

• search

• Home

• Docs (page 1)

• KB

• Training

• FAQ

356 Chapter 8. Reference

https://galeracluster.com
mailto:info@codership.com
https://creativecommons.org/licenses/by-sa/3.0/
https://www.gnu.org/licenses/fdl-1.3.txt
https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

8.9 Glossary

Cluster Replication Normal replication path for cluster members. Can be encrypted (not by default) and unicast or
multicast (unicast by default). Runs on tcp port 4567 by default.

Donor Node The node elected to provide a state transfer (SST or IST).

Galera Arbitrator An external process that functions as an additional node in certain cluster operations, such as
Quorum calculations and generating consistent application state snapshots.

For example, consider a situation where your cluster becomes partitioned due to a loss of network connectivity
that results in two components of equal size. Each component initiates quorum calculations to determine which
should remain the Primary Component and which should become a non-operational component. If the compo-
nents are of equal size, it risks a split-brain condition. Galera Arbitrator provides an addition vote in the quorum
calculation, so that one component registers as larger than the other. The larger component then remains the
Primary Component.

Unlike the main mysqld process, garbd does not generate replication events of its own and does not store
replication data. It does, however, acknowledge all replication events. Furthermore, you can route replication
through Galera Arbitrator, such as when generating a consistent application state snapshot for backups.

For more information, see Galera Arbitrator (page 108) and Backing Up Cluster Data (page 112).

Galera Replication Plugin Galera Replication Plugin is a general purpose replication plugin for any transactional
system. It can be used to create a synchronous multi-primary replication solution to achieve high availability
and scale-out.

See Galera Replication Plugin (page 18) for more details.

GCache See Write-set Cache.

Global Transaction ID To keep the state identical on all nodes, the wsrep API uses global transaction IDs (GTID),
which are used to identify the state change and to identify the state itself by the ID of the last state change

The GTID consists of a state UUID, which uniquely identifies the state and the sequence of changes it undergoes,
and an ordinal sequence number (seqno, a 64-bit signed integer) to denote the position of the change in the
sequence.

For more information on Global Transaction ID’s, see wsrep API (page 18).

Incremental State Transfer In an Incremental State Transfer (IST) a node only receives the missing write-sets and
catches up with the group by replaying them. See also the definition for State Snapshot Transfer (SST).

For more information on IST’s, see Incremental State Transfer (IST) (page 22).

IST See Incremental State Transfer.

Joiner Node The node joining the cluster, usually a state transfer target.

Logical State Transfer Method This is a type of back-end state transfer method that operates through the database
server (for example, mysqldump).

For more information, see Logical State Snapshot (page 71).

NBO See Non-Blocking Operations.

Node A cluster node – a single mysql instance that is in the cluster.

Non-Blocking Operations With the NBO method, DDL statements are processed similarly as with the TOI (Total
Order Isolation) method, except that the NBO method uses a more efficient locking strategy. Compared with
TOI, NBO offers significant flexibility in DDL statement processing.

For more information, see Non-Blocking Operations (page 87).

8.9. Glossary 357

Galera Cluster Documentation, Releases 3.x and 4.x

PF PF is packet filter used for firewall software, that has been ported to several operating systems. It can be configured
for firewall protection of a Galera Cluster.

Physical State Transfer Method This is another type of back-end state transfer method, but it operates on the phys-
ical media in the datadir (for example, rsync and xtrabackup).

For more information, see Physical State Snapshot (page 74).

Primary Cluster A cluster with quorum. A non-primary cluster will not allow any operations and will give Unknown
command errors on any clients attempting to read or write from the database.

Primary Component In addition to single-node failures, the cluster may be split into several components due to
network failure. In such a situation, only one of the components can continue to modify the database state to
avoid history divergence. This component is called the Primary Component (PC).

For more information on the Primary Component, see Quorum Components (page 30).

Quorum A majority (> 50%) of nodes. In the event of a network partition, only the cluster partition that retains a
quorum (if any) will remain Primary by default.

Rolling Schema Upgrade The rolling schema upgrade is a DDL processing method in which the DDL will only
be processed locally on the node. The node is desynchronized from the cluster for the duration of the DDL
processing in a way that it does not block the other nodes. When the DDL processing is complete, the node
applies the delayed replication events and synchronizes with the cluster.

For more information, see Rolling Schema Upgrade (page 86).

RSU See Rolling Schema Upgrade.

seqno See Sequence Number.

Sequence Number This is a 64-bit signed integer that the node uses to denote the position of a given transaction in
the sequence. The seqno is second component to the Global Transaction ID.

Split Brain Split brain occurs when two parts of a computer cluster are disconnected, each part believing that the
other is no longer running. This problem can lead to data inconsistency.

SST See State Snapshot Transfer.

State Snapshot Transfer State Snapshot Transfer refers to a full data copy from one cluster node (that is, a donor) to
the joining node (that is, a joiner). See also the definition for Incremental State Transfer (IST).

For more information, see State Snapshot Transfer (SST) (page 70).

State UUID Unique identifier for the state of a node and the sequence of changes it undergoes. It is the first component
of the Global Transaction ID.

Streaming Replication This provides an alternative replication method for handling large or long-running write
transactions. It is a new feature in version 4.0 of Galera Cluster. In older versions, the feature is unsupported.

Under normal operation, the node performs all replication and certification operations when the transaction
commits. With large transactions this can result in conflicts if smaller transactions are committed first. With
Streaming Replication, the node breaks the transaction into fragments, then certifies and replicates them to
all nodes while the transaction is still in progress. Once certified, a fragment can no longer be aborted by a
conflicting transaction.

For more information see Streaming Replication (page 35) and Using Streaming Replication (page 106).

TOI See Total Order Isolation.

Total Order Isolation By default, DDL statements are processed by using the Total Order Isolation (TOI) method.
In TOI, the query is replicated to the nodes in a statement form before executing on the primary. The query
waits for all preceding transactions to commit and then gets executed in isolation on all nodes, simultaneously.

For more information, see Total Order Isolation (page 86).

358 Chapter 8. Reference

Galera Cluster Documentation, Releases 3.x and 4.x

write-set Transaction commits the node sends to and receives from the cluster.

Write-set Cache Galera stores write-sets in a special cache called, Write-set Cache (GCache). GCache is a memory
allocator for write-sets. Its primary purpose is to minimize the write set footprint on the RAM.

For more information, see Write-Set Cache (GCache) (page 23).

wsrep API The wsrep API is a generic replication plugin interface for databases. The API defines a set of application
callbacks and replication plugin calls.

For more information, see wsrep API (page 18).

8.9. Glossary 359

Galera Cluster Documentation, Releases 3.x and 4.x

360 Chapter 8. Reference

INDEX

A
Asynchronous replication

Descriptions, 13

B
base_dir

wsrep Provider Options, 283
base_host

wsrep Provider Options, 283
base_port

wsrep Provider Options, 283

C
cert.log_conflicts

wsrep Provider Options, 283
cert.optimistic_pa

wsrep Provider Options, 284
Certification based replication

Descriptions, 1
Checking

wsrep Provider Options, 311
Cluster Replication, 357
Configuration

pc.recovery, 93

D
Database cluster

Descriptions, 11
datadir

wsrep Provider Options, 284
debug

wsrep Provider Options, 284
Debug log

Logs, 237
Descriptions

Asynchronous replication, 13
Certification based replication, 1
Database cluster, 11
Eager replication, 13
Galera Arbitrator, 108
GCache, 23
Global Transaction ID, 18

Lazy replication, 13
Non-Blocking Operations, 87
Rolling Schema Upgrade, 86
Synchronous replication, 13
Total Order Isolation, 86
Virtual Synchrony, 19
Virtual synchrony, 1
Weighted Quorum, 31
Writeset Cache, 23
wsrep API, 18

DONOR
Node states, 25

Donor Node, 357
Drupal, 237

E
Eager replication

Descriptions, 13
ER_UNKNOWN_COM_ERROR

Errors, 266
Errors

ER_UNKNOWN_COM_ERROR, 266
evs.auto_evict

wsrep Provider Options, 284
evs.causal_keepalive_period

wsrep Provider Options, 285
evs.consensus_timeout

Parameters, 28
wsrep Provider Options, 285

evs.debug_log_mask
wsrep Provider Options, 285

evs.delay_margin
wsrep Provider Options, 286

evs.delayed_keep_period
wsrep Provider Options, 286

evs.evict
wsrep Provider Options, 287

evs.inactive_check_period
Parameters, 28
wsrep Provider Options, 287

evs.inactive_timeout
Parameters, 28

361

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep Provider Options, 287
evs.info_log_mask

wsrep Provider Options, 288
evs.install_timeout

wsrep Provider Options, 288
evs.join_retrans_period

wsrep Provider Options, 288
evs.keepalive_period

Parameters, 28
wsrep Provider Options, 289

evs.max_install_timeouts
wsrep Provider Options, 289

evs.send_window
wsrep Provider Options, 289

evs.stats_report_period
wsrep Provider Options, 290

evs.suspect_timeout
Parameters, 28
wsrep Provider Options, 290

evs.use_aggregate
wsrep Provider Options, 290

evs.user_send_window
Parameters, 290

evs.version
wsrep Provider Options, 291

evs.view_forget_timeout
wsrep Provider Options, 291

F
Functions

WSREP_LAST_SEE_GTID(), 273
WSREP_LAST_WRITTEN_GTID(), 274
WSREP_SYNC_WAIT_UPTO_GTID(), 274

G
Galera Arbitrator, 357
Galera Arbitrator, 112

Descriptions, 108
Logs, 108

Galera Cluster 4.x
Streaming Replication, 35, 106, 272
Synchronization Functions, 273, 274
System Tables, 80

Galera Replication Plugin, 357
GCache, 357
GCache

Descriptions, 23
gcache.dir

wsrep Provider Options, 291
gcache.keep_pages_size

wsrep Provider Options, 292
gcache.mem_size

wsrep Provider Options, 292
gcache.name

wsrep Provider Options, 292
gcache.page_size

wsrep Provider Options, 293
gcache.recover

wsrep Provider Options, 293
gcache.size

wsrep Provider Options, 293
gcomm.thread_prio

wsrep Provider Options, 294
gcs.fc_debug

wsrep Provider Options, 294
gcs.fc_factor

wsrep Provider Options, 294
gcs.fc_limit

wsrep Provider Options, 295
gcs.fc_master_slave

wsrep Provider Options, 295
gcs.fc_single_primary

wsrep Provider Options, 295
gcs.max_packet_size

wsrep Provider Options, 295
gcs.max_throttle

wsrep Provider Options, 296
gcs.recv_q_hard_limit

wsrep Provider Options, 296
gcs.recv_q_soft_limit

wsrep Provider Options, 296
gcs.sync_donor

wsrep Provider Options, 297
gcs.vote_policy

wsrep Provider Options, 297
Global Transaction ID, 357
Global Transaction ID

Descriptions, 18
gmcast.isolate

wsrep Provider Options, 297
gmcast.listen_addr

Parameters, 112
wsrep Provider Options, 298

gmcast.mcast_addr
wsrep Provider Options, 298

gmcast.mcast_ttl
wsrep Provider Options, 298

gmcast.peer_timeout
wsrep Provider Options, 299

gmcast.segment
wsrep Provider Options, 299

gmcast.time_wait
wsrep Provider Options, 299

gmcast.version
wsrep Provider Options, 300

gvwstate.dat, 301

362 Index

Galera Cluster Documentation, Releases 3.x and 4.x

I
Incremental State Transfer, 357
Incremental State Transfer

State Snapshot Transfer methods, 22
innodb-wsrep-applier-lock-wait-timeout

Parameters, 238
innodb_flush_log_at_trx_commit

wsrep Provider Options, 300
IST, 357
ist.recv_addr

wsrep Provider Options, 301
ist.recv_bind

wsrep Provider Options, 301

J
JOINED

Node states, 25
JOINER

Node states, 25
Joiner Node, 357

L
Lazy replication

Descriptions, 13
Logical State Transfer Method, 357
Logs

Debug log, 237
Galera Arbitrator, 108
mysqld error log, 112

M
my.cnf, 242
mysqld error log

Logs, 112

N
NBO, 357
Node, 357
Node state changes

Node states, 26
Node states

DONOR, 25
JOINED, 25
JOINER, 25
Node state changes, 26
OPEN, 25
PRIMARY, 25
SYNCED, 25

Non-Blocking Operations, 357
Non-Blocking Operations

Descriptions, 87

O
OPEN

Node states, 25

P
pairs: Parameters

wsrep_applier_UK_checks, 264
wsrep_slave_UK_checks, 265

Parameters
evs.consensus_timeout, 28
evs.inactive_check_period, 28
evs.inactive_timeout, 28
evs.keepalive_period, 28
evs.suspect_timeout, 28
evs.user_send_window, 290
gmcast.listen_addr, 112
innodb-wsrep-applier-lock-wait-timeout,

238
pc.bootstrap, 96
pc.npvo, 303
pc.weight, 33
socket.ssl_cert, 221
socket.ssl_cipher, 221
socket.ssl_compression, 221
socket.ssl_key, 221
wsrep_applier_FK_checks, 262
wsrep_applier_FK_failure_retries,

239
wsrep_applier_threads, 263
wsrep_auto_increment_control, 239
wsrep_causal_reads, 240, 270
wsrep_cert_deps_distance, 147
wsrep_certification_rules, 241
wsrep_certify_nonPK, 241
wsrep_cluster_address, 91, 146, 242
wsrep_cluster_conf_id, 145
wsrep_cluster_name, 112, 242
wsrep_cluster_size, 145
wsrep_cluster_state_uuid, 145
wsrep_cluster_status, 145
wsrep_connected, 146
wsrep_convert_lock_to_trx, 243
wsrep_data_dir, 68
wsrep_data_home_dir, 244
wsrep_dbug_option, 244
wsrep_debug, 245
wsrep_desync, 246
wsrep_dirty_reads, 247
wsrep_drupal_282555_workaround, 248
wsrep_evs_repl_latency, 320
wsrep_flow_control_paused, 147
wsrep_forced_binlog_format, 248
wsrep_ignore_apply_errors, 249
wsrep_info_level, 249
wsrep_last_committed, 96
wsrep_load_data_splitting, 250

Index 363

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_local_recv_queue_avg, 147
wsrep_local_recv_queue_max, 147
wsrep_local_recv_queue_min, 147
wsrep_local_send_queue_avg, 149
wsrep_local_send_queue_max, 149
wsrep_local_send_queue_min, 149
wsrep_local_state_comment, 146
wsrep_log_conflicts, 250
wsrep_max_ws_rows, 251
wsrep_max_ws_size, 251
wsrep_mode, 252
wsrep_node_address, 253
wsrep_node_incoming_address, 254
wsrep_node_name, 68, 112, 255
wsrep_notify_cmd, 144, 256
wsrep_on, 257
wsrep_OSU_method, 86, 258
wsrep_preordered, 259
wsrep_provider, 259
wsrep_provider_options, 31, 96, 260
wsrep_ready, 146
wsrep_restart_replica, 261
wsrep_restart_slave, 262
wsrep_retry_autocommit, 262
wsrep_slave_FK_checks, 263
wsrep_slave_threads, 264
wsrep_sst_auth, 265
wsrep_sst_donor, 68, 265
wsrep_sst_donor_rejects_queries, 266
wsrep_sst_method, 22, 267
wsrep_sst_receive_address, 268
wsrep_start_position, 269
wsrep_status_file, 269
wsrep_sync_server_uuid, 270
wsrep_sync_wait, 270
wsrep_trx_fragment_size, 272
wsrep_trx_fragment_unit, 272

pc.announce_timeout
wsrep Provider Options, 302

pc.bootstrap
Parameters, 96
wsrep Provider Options, 302

pc.checksum
wsrep Provider Options, 302

pc.ignore_quorum
wsrep Provider Options, 303

pc.ignore_sb
wsrep Provider Options, 302

pc.linger
wsrep Provider Options, 303

pc.npvo
Parameters, 303

pc.recovery
Configuration, 93

wsrep Provider Options, 301
pc.version

wsrep Provider Options, 305
pc.wait_prim

wsrep Provider Options, 304
pc.wait_prim_timeout

wsrep Provider Options, 304
pc.weight

Parameters, 33
wsrep Provider Options, 304

PF, 358
Physical State Transfer Method, 358
PRIMARY

Node states, 25
Primary Cluster, 358
Primary Component, 358
Primary Component

Nominating, 96
protonet.backend

wsrep Provider Options, 305
protonet.version

wsrep Provider Options, 305

Q
Quorum, 358

R
repl.causal_read_timeout

wsrep Provider Options, 306
repl.commit_order

wsrep Provider Options, 306
repl.key_format

wsrep Provider Options, 306
repl.max_ws_size

wsrep Provider Options, 307
repl.proto_max

wsrep Provider Options, 307
Rolling Schema Upgrade, 358
Rolling Schema Upgrade

Descriptions, 86
RSU, 358

S
seqno, 358
Sequence Number, 358
Setting

wsrep Provider Options, 311
socket.checksum

wsrep Provider Options, 309
socket.dynamic

wsrep Provider Options, 309
socket.recv_buf_size

wsrep Provider Options, 307
socket.send_buf_size

364 Index

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep Provider Options, 307
socket.ssl

wsrep Provider Options, 308
socket.ssl_ca

wsrep Provider Options, 308
socket.ssl_cert

Parameters, 221
wsrep Provider Options, 308

socket.ssl_cipher
Parameters, 221
wsrep Provider Options, 309

socket.ssl_compression
Parameters, 221
wsrep Provider Options, 310

socket.ssl_key
Parameters, 221
wsrep Provider Options, 310

socket.ssl_password_file
wsrep Provider Options, 310

socket.ssl_reload
wsrep Provider Options, 311

Split Brain, 358
Split-brain

Descriptions, 31
Prevention, 108
Recovery, 96

SST, 358
State Snapshot Transfer, 358
State Snapshot Transfer

State Snapshot Transfer methods, 22
State Snapshot Transfer methods

Incremental State Transfer, 22
State Snapshot Transfer, 22

State UUID, 358
Status Variables

wsrep_apply_oooe, 313
wsrep_apply_oool, 314
wsrep_apply_waits, 314
wsrep_apply_window, 314
wsrep_cert_deps_distance, 315
wsrep_cert_index_size, 315
wsrep_cert_interval, 315
wsrep_cluster_conf_id, 316
wsrep_cluster_size, 316
wsrep_cluster_state_uuid, 317
wsrep_cluster_status, 317
wsrep_cluster_weight, 317
wsrep_commit_oooe, 318
wsrep_commit_oool, 318
wsrep_commit_window, 319
wsrep_connected, 319
wsrep_desync_count, 319
wsrep_evs_delayed, 320
wsrep_evs_evict_list, 320

wsrep_evs_state, 321
wsrep_flow_control_active, 321
wsrep_flow_control_paused, 322
wsrep_flow_control_paused_ns, 322
wsrep_flow_control_recv, 322
wsrep_flow_control_requested, 323
wsrep_flow_control_sent, 323
wsrep_gcomm_uuid, 324
wsrep_gmcast_segment, 323
wsrep_incoming_addresses, 324
wsrep_ist_receive_status, 325
wsrep_last_committed, 325
wsrep_local_bf_aborts, 325
wsrep_local_cached_downto, 325
wsrep_local_cert_failures, 326
wsrep_local_commits, 326
wsrep_local_index, 326
wsrep_local_recv_queue, 327
wsrep_local_recv_queue_avg, 327
wsrep_local_recv_queue_max, 327
wsrep_local_recv_queue_min, 328
wsrep_local_replays, 328
wsrep_local_send_queue, 329
wsrep_local_send_queue_avg, 329
wsrep_local_send_queue_max, 329
wsrep_local_send_queue_min, 330
wsrep_local_state, 330
wsrep_local_state_comment, 330
wsrep_local_state_uuid, 331
wsrep_open_connections, 331
wsrep_open_transactions, 331
wsrep_protocol_version, 332
wsrep_provider_name, 332
wsrep_provider_vendor, 333
wsrep_provider_version, 333
wsrep_ready, 333
wsrep_received, 334
wsrep_received_bytes, 334
wsrep_repl_data_bytes, 335
wsrep_repl_keys, 335
wsrep_repl_keys_bytes, 335
wsrep_repl_other_bytes, 336
wsrep_replicated, 336
wsrep_replicated_bytes, 336

Streaming Replication, 358
Streaming Replication

Galera Cluster 4.x, 35, 106, 272
wsrep_trx_fragment_size, 272
wsrep_trx_fragment_unit, 272

SYNCED
Node states, 25

Synchronization Functions
Galera Cluster 4.x, 273, 274

Synchronous replication

Index 365

Galera Cluster Documentation, Releases 3.x and 4.x

Descriptions, 13
System Tables

Galera Cluster 4.x, 80

T
TOI, 358
Total Order Isolation, 358
Total Order Isolation, 68

Descriptions, 86

V
Virtual Synchrony

Descriptions, 19
Virtual synchrony

Descriptions, 1

W
Weighted Quorum

Descriptions, 31
write-set, 359
Write-set Cache, 359
Writeset Cache

Descriptions, 23
wsrep API, 359
wsrep API

Descriptions, 18
wsrep Provider Options

base_dir, 283
base_host, 283
base_port, 283
cert.log_conflicts, 283
cert.optimistic_pa, 284
Checking, 311
datadir, 284
debug, 284
evs.auto_evict, 284
evs.causal_keepalive_period, 285
evs.consensus_timeout, 285
evs.debug_log_mask, 285
evs.delay_margin, 286
evs.delayed_keep_period, 286
evs.evict, 287
evs.inactive_check_period, 287
evs.inactive_timeout, 287
evs.info_log_mask, 288
evs.install_timeout, 288
evs.join_retrans_period, 288
evs.keepalive_period, 289
evs.max_install_timeouts, 289
evs.send_window, 289
evs.stats_report_period, 290
evs.suspect_timeout, 290
evs.use_aggregate, 290
evs.version, 291

evs.view_forget_timeout, 291
gcache.dir, 291
gcache.keep_pages_size, 292
gcache.mem_size, 292
gcache.name, 292
gcache.page_size, 293
gcache.recover, 293
gcache.size, 293
gcomm.thread_prio, 294
gcs.fc_debug, 294
gcs.fc_factor, 294
gcs.fc_limit, 295
gcs.fc_master_slave, 295
gcs.fc_single_primary, 295
gcs.max_packet_size, 295
gcs.max_throttle, 296
gcs.recv_q_hard_limit, 296
gcs.recv_q_soft_limit, 296
gcs.sync_donor, 297
gcs.vote_policy, 297
gmcast.isolate, 297
gmcast.listen_addr, 298
gmcast.mcast_addr, 298
gmcast.mcast_ttl, 298
gmcast.peer_timeout, 299
gmcast.segment, 299
gmcast.time_wait, 299
gmcast.version, 300
innodb_flush_log_at_trx_commit, 300
ist.recv_addr, 301
ist.recv_bind, 301
pc.announce_timeout, 302
pc.bootstrap, 302
pc.checksum, 302
pc.ignore_quorum, 303
pc.ignore_sb, 302
pc.linger, 303
pc.recovery, 301
pc.version, 305
pc.wait_prim, 304
pc.wait_prim_timeout, 304
pc.weight, 304
protonet.backend, 305
protonet.version, 305
repl.causal_read_timeout, 306
repl.commit_order, 306
repl.key_format, 306
repl.max_ws_size, 307
repl.proto_max, 307
Setting, 311
socket.checksum, 309
socket.dynamic, 309
socket.recv_buf_size, 307
socket.send_buf_size, 307

366 Index

Galera Cluster Documentation, Releases 3.x and 4.x

socket.ssl, 308
socket.ssl_ca, 308
socket.ssl_cert, 308
socket.ssl_cipher, 309
socket.ssl_compression, 310
socket.ssl_key, 310
socket.ssl_password_file, 310
socket.ssl_reload, 311

wsrep_applier_FK_checks
Parameters, 262

wsrep_applier_FK_failure_retries
Parameters, 239

wsrep_applier_threads
Parameters, 263

wsrep_apply_oooe
Status Variables, 313

wsrep_apply_oool
Status Variables, 314

wsrep_apply_waits
Status Variables, 314

wsrep_apply_window
Status Variables, 314

wsrep_auto_increment_control
Parameters, 239

wsrep_causal_reads
Parameters, 240, 270

wsrep_cert_deps_distance
Parameters, 147
Status Variables, 315

wsrep_cert_index_size
Status Variables, 315

wsrep_cert_interval
Status Variables, 315

wsrep_certification_rules
Parameters, 241

wsrep_certify_nonPK
Parameters, 241

wsrep_cluster_address
Parameters, 91, 146, 242

wsrep_cluster_conf_id
Parameters, 145
Status Variables, 316

wsrep_cluster_name
Parameters, 112, 242

wsrep_cluster_size
Parameters, 145
Status Variables, 316

wsrep_cluster_state_uuid
Parameters, 145
Status Variables, 317

wsrep_cluster_status
Parameters, 145
Status Variables, 317

wsrep_cluster_weight

Status Variables, 317
wsrep_commit_oooe

Status Variables, 318
wsrep_commit_oool

Status Variables, 318
wsrep_commit_window

Status Variables, 319
wsrep_connected

Parameters, 146
Status Variables, 319

wsrep_convert_lock_to_trx
Parameters, 243

wsrep_data_dir
Parameters, 68

wsrep_data_home_dir
Parameters, 244

wsrep_dbug_option
Parameters, 244

wsrep_debug
Parameters, 245

wsrep_desync
Parameters, 246

wsrep_desync_count
Status Variables, 319

wsrep_dirty_reads
Parameters, 247

wsrep_drupal_282555_workaround
Parameters, 248

wsrep_evs_delayed
Status Variables, 320

wsrep_evs_evict_list
Status Variables, 320

wsrep_evs_repl_latency
Parameters, 320

wsrep_evs_state
Status Variables, 321

wsrep_flow_control_active
Status Variables, 321

wsrep_flow_control_paused
Parameters, 147
Status Variables, 322

wsrep_flow_control_paused_ns
Status Variables, 322

wsrep_flow_control_recv
Status Variables, 322

wsrep_flow_control_requested
Status Variables, 323

wsrep_flow_control_sent
Status Variables, 323

wsrep_forced_binlog_format
Parameters, 248

wsrep_gcomm_uuid
Status Variables, 324

wsrep_gmcast_segment

Index 367

Galera Cluster Documentation, Releases 3.x and 4.x

Status Variables, 323
wsrep_ignore_apply_errors

Parameters, 249
wsrep_incoming_addresses

Status Variables, 324
wsrep_info_level

Parameters, 249
wsrep_ist_receive_status

Status Variables, 325
wsrep_last_committed

Parameters, 96
Status Variables, 325

WSREP_LAST_SEE_GTID()
Functions, 273

WSREP_LAST_WRITTEN_GTID()
Functions, 274

wsrep_load_data_splitting
Parameters, 250

wsrep_local_bf_aborts
Status Variables, 325

wsrep_local_cached_downto
Status Variables, 325

wsrep_local_cert_failures
Status Variables, 326

wsrep_local_commits
Status Variables, 326

wsrep_local_index
Status Variables, 326

wsrep_local_recv_queue
Status Variables, 327

wsrep_local_recv_queue_avg
Parameters, 147
Status Variables, 327

wsrep_local_recv_queue_max
Parameters, 147
Status Variables, 327

wsrep_local_recv_queue_min
Parameters, 147
Status Variables, 328

wsrep_local_replays
Status Variables, 328

wsrep_local_send_queue
Status Variables, 329

wsrep_local_send_queue_avg
Parameters, 149
Status Variables, 329

wsrep_local_send_queue_max
Parameters, 149
Status Variables, 329

wsrep_local_send_queue_min
Parameters, 149
Status Variables, 330

wsrep_local_state
Status Variables, 330

wsrep_local_state_comment
Parameters, 146
Status Variables, 330

wsrep_local_state_uuid
Status Variables, 331

wsrep_log_conflicts
Parameters, 250

wsrep_max_ws_rows
Parameters, 251

wsrep_max_ws_size
Parameters, 251

wsrep_mode
Parameters, 252

wsrep_node_address
Parameters, 253

wsrep_node_incoming_address
Parameters, 254

wsrep_node_name
Parameters, 68, 112, 255

wsrep_notify_cmd
Parameters, 144, 256

wsrep_on
Parameters, 257

wsrep_open_connections
Status Variables, 331

wsrep_open_transactions
Status Variables, 331

wsrep_OSU_method
Parameters, 86, 258

wsrep_preordered
Parameters, 259

wsrep_protocol_version
Status Variables, 332

wsrep_provider
Parameters, 259

wsrep_provider_name
Status Variables, 332

wsrep_provider_options
Parameters, 31, 96, 260

wsrep_provider_vendor
Status Variables, 333

wsrep_provider_version
Status Variables, 333

wsrep_ready
Parameters, 146
Status Variables, 333

wsrep_received
Status Variables, 334

wsrep_received_bytes
Status Variables, 334

wsrep_repl_data_bytes
Status Variables, 335

wsrep_repl_keys
Status Variables, 335

368 Index

Galera Cluster Documentation, Releases 3.x and 4.x

wsrep_repl_keys_bytes
Status Variables, 335

wsrep_repl_other_bytes
Status Variables, 336

wsrep_replicated
Status Variables, 336

wsrep_replicated_bytes
Status Variables, 336

wsrep_restart_replica
Parameters, 261

wsrep_restart_slave
Parameters, 262

wsrep_retry_autocommit
Parameters, 262

wsrep_slave_FK_checks
Parameters, 263

wsrep_slave_threads
Parameters, 264

wsrep_sst_auth
Parameters, 265

wsrep_sst_donor
Parameters, 68, 265

wsrep_sst_donor_rejects_queries
Parameters, 266

wsrep_sst_method
Parameters, 22, 267

wsrep_sst_receive_address
Parameters, 268

wsrep_start_position
Parameters, 269

wsrep_status_file
Parameters, 269

wsrep_sync_server_uuid
Parameters, 270

wsrep_sync_wait
Parameters, 270

WSREP_SYNC_WAIT_UPTO_GTID()
Functions, 274

wsrep_trx_fragment_size
Parameters, 272
Streaming Replication, 272

wsrep_trx_fragment_unit
Parameters, 272
Streaming Replication, 272

Index 369

	Overview of Galera Cluster
	Technical Description
	Database Replication
	Certification-Based Replication
	Replication API
	Isolation Levels
	State Transfers
	Flow Control
	Node Failure & Recovery
	Quorum Components
	Streaming Replication

	Installing Galera Cluster
	Galera Cluster for MySQL—Binary Installation
	Galera Cluster for MySQL - Source Installation
	MariaDB Galera Cluster - Binary Installation
	MariaDB Galera Cluster - Source Installation
	Percona XtraDB Cluster - Binary Installation
	Percona XtraDB Cluster - Source Installation

	Galera Cluster Administration
	Node Provisioning
	State Snapshot Transfers
	Logical State Snapshot
	Physical State Snapshot

	Scriptable State Snapshot Transfers
	Galera System Tables
	Schema Upgrades
	Upgrading Galera Cluster
	Recovering Primary Component
	Resetting the Quorum
	Managing Flow Control
	Auto-Eviction
	Using Streaming Replication
	Galera Arbitrator
	Backing Up Cluster Data

	Deployment
	Cluster Deployment Variants
	Load Balancing
	HAProxy
	Pen Load Balancer
	Galera Load Balancer (Galera Load Balancer binaries are part of Galera Cluster Enterprise Edition)

	Container Deployments
	Using Docker
	Using Jails

	Cluster Monitoring
	Using Status Variables
	Database Server Logs
	The Galera Manager
	Installing Galera Manager
	AWS Ports with Galera Manager
	Galera Manager End-User License Agreement (EULA)
	Galera Manager Daemon (gmd)
	Deploying a Cluster in Galera Manager
	Adding Nodes with Galera Manager
	Adding Users to Galera Manager
	Loading Initial Data
	Monitoring a Cluster with Galera Manager
	Upgrading Galera Manager (gmd)

	Notification Command
	Notification Script Example

	Security
	Firewall Settings
	Firewall Configuration with iptables
	Firewall Configuration with FirewallD
	Firewall Configuration with PF

	SSL Settings
	SSL Certificates
	SSL Configuration
	SSL for State Snapshot Transfers

	SELinux Configuration

	Reference
	MySQL wsrep Options
	Galera Functions
	Galera Parameters
	Setting Galera Parameters in MySQL

	Galera Status Variables
	XtraBackup-v2 Parameters
	Galera Load Balancer Parameters
	Versioning Information
	Legal Notice
	Glossary

	Index

