Galera Cluster Documentation
Releases 3.x and 4.x

Codership Oy

Aug 17, 2024

Overview of Galera Cluster

Technical Description
Database Replication
Certification-Based Replication
Replication API
Isolation Levels
State Transfers
Flow Control
Node Failure & Recovery

CONTENTS

Quorum Components e e e e e e e e e e e e e 28

Streaming Replication

Installing Galera Cluster
Galera Cluster for MySQL—Binary Installation
Galera Cluster for MySQL - Source Installation
MariaDB Galera Cluster - Binary Installation
MariaDB Galera Cluster - Source Installation
Percona XtraDB Cluster - Binary Installation
Percona XtraDB Cluster - Source Installation

Galera Cluster Administration
Node Provisioning
State Snapshot Transfers
Logical State Snapshot
Physical State Snapshot
Scriptable State Snapshot Transfers
Galera System Tables
Schema Upgrades
Upgrading Galera Cluster
Recovering Primary Component
Resetting the Quorum
Managing Flow Control
Auto-Eviction
Using Streaming Replication
Galera Arbitrator
Backing Up Cluster Data

Deployment
Cluster Deployment Variants

5.2 LoadBalancing e e e e e e e e
52,1 HAPIOXY .« o v o e
522 PenLoadBalancer e
5.2.3 Galera Load Balancer (Galera Load Balancer binaries are part of Galera Cluster Enterprise
Edition) e e e e
5.3 Container Deployments e e e e
5.3.1 UsingDocker e e e e e e e e e
5.32 UsinglJails o e e e e e e e
6 Cluster Monitoring
6.1 Using Status Variables e e e e e e e
6.2 Database Server Logs L e e e e e
6.3 The GaleraManager e e
6.3.1 Installing Galera Manager it e e
6.3.2 AWS Ports with Galera Manager L
6.3.3 Galera Manager End-User License Agreement (EULA)
6.3.4 Galera Manager Daemon (gmd) e e e e
6.3.5 Deploying a Cluster in Galera Manager
6.3.6 Adding Nodes with Galera Manager
6.3.7 Adding Users to Galera Manager i
6.3.8 LoadingInitial Data e e e
6.3.9 Monitoring a Cluster with GaleraManager. v i v v i
6.3.10 Upgrading Galera Manager (gmd) o
6.4 Notification Command e e e e e e e
6.5 Notification Script Example L
7 Security
7.1 Firewall Settings o L e e e e e e e e e e
7.1.1 Firewall Configuration with iptables
7.1.2 Firewall Configuration with FirewallD
7.1.3 Firewall ConfigurationwithPF
7.2 SSLSettings o v o o e e e e e e e e e e e e e
7.2.1 SSL Certificates o o e e e e e e e
7.2.2 SSL Configuration e
7.2.3 SSL for State Snapshot Transfers e
7.3 SELinux Configuration v v i it e e e e e e e e e e e e e e e e e e
8 Reference
8.1 MySQL WSrep OptionS . . .« v v v v v e
8.2 GaleraFunctions e e e e e
8.3 GaleraParameters L e e e e
8.3.1 Setting Galera Parameters in MySQL oo
8.4 Galera Status Variables L e e
8.5 XtraBackup Parameters L e
8.6 Galera Load Balancer Parameters
8.7 Versioning Information L e e e e e
8.8 Legal Notice o i i i e e e e e e e e
8.9 Glossary e
Index

139
140
146
148
151
157
161
163
168
176
182
186
192
200
202
204

209
210
211
213
215
217
217
220
223
227

231
233
265
268
302
302
328
336
345
347
348

351

Galera Cluster Documentation, Releases 3.x and 4.x

The Library
* Documentation (page 1)
* Knowledge Base
* Training
* Training Courses
* Tutorial Articles
* Training Videos
* FAQ
* search
* Home
* Docs (page 1)
* KB
* Training
* FAQ

This is the Codership Documentation. It documents the latest version of Galera Cluster, as well as related Galera
tools, such as the Galera Arbitrator. It also includes, at times, information on features available in upcoming versions
of Galera Cluster that haven’t been released yet. For such text, the new version number is noted.

Installation & Configuration

Database Replication (page 9) State Transfers (page 20)
Replication API (page 14) Flow Control (page 23)
Installing Galera Cluster (page 37) Node Failure & Recovery (page 26)
Certification-Based Replication (page 12) | Quorum Components (page 28)
Isolation Levels (page 17) Streaming Replication (page 33)
Administration
Node Provisioning (page 66) Recovering Primary Component (page 91)
State Snapshot Transfers (page 68) Resetting the Quorum (page 94)
Scriptable State Snapshot Transfers (page 75) | Managing Flow Control (page 97)
Galera System Tables (page 78) Auto-Eviction (page 101)
Schema Upgrades (page 83) Using Streaming Replication (page 104)
Upgrading Galera Cluster (page 87) Backing Up Cluster Data (page 110)
crash-recovery inconsistency-voting
Deployment
Load Balancing (page 120) Cluster Deployment Variants (page 114)
Container Deployments (page 129) | Galera Arbitrator (page 106)
ldap-plugin pam-plugin
keyring-plugin

CONTENTS 1

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Monitoring

Reference

Using Status Variables (page 140) | Database Server Logs (page 146)

The Galera Manager (page 148) Security (page 209)

Notification Command (page 202) | audit-log-plugin

MySQL wsrep Options (page 233)

Galera Load Balancer Parameters (page 336)

Galera Functions (page 265)

XtraBackup Parameters (page 328)

Galera Parameters (page 268)

Galera System Tables (page 78)

Galera Status Variables (page 302)

Versioning Information (page 345)

mariadb-options

Miscellaneous

Glossary (page 348) | Legal Notice (page 347)

genindex

../whats-new

For resolving problems you might have with the software, you can also check our Knowledge Base. There you will
find troubleshooting and best practices articles. You can also post questions on the Codership Forum. The community,
as well as our staff monitor and respond to posts made there.

If you need more immediate and personalized assistance, you can get a Support contract with us at Codership. For a
quote on the cost of support, write us at info@codership.com or use our on-line form to send us a message.

The Library

Documentation (page 1)

Knowledge Base

Training

Training Courses

Tutorial Articles

Training Videos

FAQ
search

Home

Docs (page 1)

KB
Training

FAQ

CONTENTS

https://galeracluster.com/community/
mailto:info@codership.com
https://galeracluster.com/contact-us/#send-us-a-message
https://galeracluster.com

CHAPTER
ONE

OVERVIEW OF GALERA CLUSTER

Galera Cluster is a synchronous multi-master database cluster, based on synchronous replication and MySQL and
InnoDB. When Galera Cluster is in use, database reads and writes can be directed to any node. Any individual node
can be lost without interruption in operations and without using complex failover procedures.

At ahigh level, Galera Cluster consists of a database server (i.e., MySQL or MariaDB) that uses the Galera Replication
Plugin to manage replication. To be more specific, the MySQL replication plugin API has been extended to provide
all the information and hooks required for true multi-master, synchronous replication. This extended API is called the
Write-Set Replication API, or wsrep API.

Through the wsrep API, Galera Cluster provides certification-based replication. A transaction for replication, the
write-set not only contains the database rows to replicate, but also includes information on all of the locks that were
held by the database during the transaction. Each node then certifies the replicated write-set against other write-sets
in the applier queue. The write-set is then applied—if there are no conflicting locks. At this point, the transaction is
considered committed, after which each node continues to apply it to the tablespace.

This approach is also called virtually synchronous replication, given that while it is logically synchronous, the actual
writing and committing to the tablespace happens independently, and thus asynchronously on each node.

Join Galera ClusterTraining

v

Benefits of Galera Cluster

Galera Cluster provides a significant improvement in high-availability for the MySQL system. The various ways to
achieve high-availability have typically provided only some of the features available through Galera Cluster, making
the choice of a high-availability solution an exercise in trade-offs.

The following features are available through Galera Cluster:
* True Multi-Master
You can read and write to any node at any time. Changes to data on one node will be replicated on all.
* Synchronous Replication
There is no slave lag, so no data is lost if a node crashes.
* Tightly Coupled
All nodes hold the same state. There is no diverged data between nodes.
* Multi-Threaded Slave

This allows for better performance and for any workload.

https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

No Master-Slave Failover
There is no need for master-slave operations or to use VIP.

Hot Standby

There is no downtime related to failures or intentionally taking down a node for maintenance since there is no

failover.

Automatic Node Provisioning

There’s no need to backup manually the database and copy it to the new node.

Supports InnoDB.
The InnoDB storage engine provides for transactional tables.

Transparent to Applications

Generally, you won’t have to change an application that will interface with the database as a result of Galera. If

you do, it will be minimal changes.
No Read and Write Splitting Needed

There is no need to split read and write queries.

In summary, Galera Cluster is a high-availability solution that is both robust in terms of data integrity and provides
high-performance with instant failovers.

Cloud Implementations with Galera Cluster

An additional benefit of Galera Cluster is good cloud support. Automatic node provisioning makes elastic scale-out
and scale-in operations painless. Galera Cluster has been proven to perform extremely well in the cloud, such as when
using multiple small node instances, across multiple data centers—AWS zones, for example—or even over Wider
Area Networks.

The Library

Documentation (page 1)
Knowledge Base
Training

Training Courses
Tutorial Articles
Training Videos

FAQ

search

Related Documents

Certification Replication (page 12)
Database Replication (page 9)
Flow Control (page 23)

Isolation Levels (page 17)

Node Recovery (page 26)

Quorum Components (page 28)

Chapter 1. Overview of Galera Cluster

Galera Cluster Documentation, Releases 3.x and 4.x

Replication Architecture (page 14)
State Transfers (page 20)
Streaming Replication (page 33)
Home

Docs (page 1)

KB

Training

FAQ

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

6 Chapter 1. Overview of Galera Cluster

CHAPTER
TWO

TECHNICAL DESCRIPTION

Galera Cluster is a synchronous certification-based replication solution for MySQL, MariaDB and Percona XtraDB.
Cluster nodes are identical and fully representative of the cluster state. They allow for unconstrained transparent client
access, acting as a single-distributed database server. In order to better understand Galera Cluster, this section provides
detailed information on how it works and how you can benefit from it.

Understanding Replication

Replication in the context of databases refers to the frequent copying of data from one database server to another.
These sections provide a high-level explanation of replication both in the general sense of how it works, as well as the
particulars of how Galera Cluster implements these core concepts.

e Database Replication (page 9)

This section explains how database replication works in general. It provides an overview of the problems
inherent in the various replication implementations, including master-slave, asynchronous and synchronous
replication.

* Certification-Based Replication (page 12)

Using group communications and transaction ordering techniques, certification-based replication allows for
synchronous replication.

Understanding Galera Cluster

With a better grasp on how replication works, these pages provide a more detailed explanation of how Galera Cluster
implements certification-based replication, including the specific architecture of the nodes, how they communicate
with each other, as well as replicate data and manage the replication process.

* Replication API (page 14)

While the above sections explain the abstract concepts surrounding certification-based replication, this section
covers the specific architecture used by Galera Cluster in implementing write-set replication, including the wsrep
API and the Galera Replication and Group Communication plug-ins.

e [solation Levels (page 17)

In a database system, the server will process concurrent transactions in isolation from each other. The level of
isolation determines whether and how these transactions affect one another. This section provides an overview
of the isolation levels supported by Galera Cluster.

e State Transfers (page 20)

The actual process that nodes use to replicate data into each other is called provisioning. Galera Cluster supports
two provisioning methods: State Snapshot Transfers and Incremental State Transfers. This section presents an
overview of each.

Galera Cluster Documentation, Releases 3.x and 4.x

Flow Control (page 23)

Galera Cluster manages the replication process using a feedback mechanism called Flow Control. This allows
the node to pause and resume replication according to its performance needs and to prevent any node from
lagging too far behind the others in applying transaction. This section provides an overview of Flow Control
and the different states nodes can hold.

Node Failure & Recovery (page 26)

Nodes fail to operate when they lose their connection with the cluster. This can occur for various reasons, such
as hardware failures, software crashes, or the loss of network connectivity. This section provides an overview of
how nodes and the cluster cope with failure and how they may recover.

Quorum Components (page 28)

When nodes connect to each other, they form components. The Primary Component is a component that has
Quorum: it carries the majority of nodes in the cluster. By default, each node represents one vote in quorum
calculations. However, you can modify this feature in order to ensure certain stable nodes with strong connec-
tions carry a greater value. This section provides an overview of how Galera Cluster handles weighted values in
quorum calculations.

Streaming Replication (page 33)

Normally, nodes transfer all replication and certification events on the transaction commit. With Streaming
Replication, the nodes break the transaction into fragments. Then they certify, replicate and apply these repli-
cation fragments onto the slave nodes. This section describes Streaming Replication, how it works and the
limitations of its use.

Related Documents

Certification Replication (page 12)
Database Replication (page 9)
Flow Control (page 23)

Isolation Levels (page 17)

Node Recovery (page 26)

Quorum Components (page 28)
Replication Architecture (page 14)
State Transfers (page 20)
Streaming Replication (page 33)

The Library

Documentation (page 1)
Knowledge Base
Training

Training Courses
Tutorial Articles
Training Videos

FAQ

search

Related Documents

Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

e Certification Replication (page 12)
* Database Replication (page 9)

* Flow Control (page 23)

e Isolation Levels (page 17)

* Node Recovery (page 26)

* Quorum Components (page 28)

* Replicaiton Architecture (page 14)
o State Transfers (page 20)
 Streaming Replication (page 33)

* Home

* Docs (page 1)

* KB

* Training

* FAQ

2.1 Database Replication

Database replication refers to the frequent copying of data from one node—a database on a server—into another.
Think of a database replication system as a distributed database, where all nodes share the same level of information.
This system is also known as a database cluster.

The database clients, such as web browsers or computer applications, do not see the database replication system, but
they benefit from close to native DBMS (Database Management System) behavior.

Join Galera ClusterTraining .

Masters and Slaves

Many DATABASE MANAGEMENT SYSTEMS (DBMS) replicate the database.
The most common replication setup uses a master/slave relationship between the original data set and the copies.

In this system, the master database server logs the updates to the data and propagates those logs through the network
to the slaves. The slave database servers receive a stream of updates from the master and apply those changes.

Another common replication setup uses mult-master replication, where all nodes function as masters.

In a multi-master replication system, you can submit updates to any database node. These updates then propagate
through the network to other database nodes. All database nodes function as masters. There are no logs available and
the system provides no indicators sent to tell you if the updates were successful.

2.1. Database Replication 9

https://galeracluster.com
https://galeracluster.com/training-courses/

Galera Cluster Documentation, Releases 3.x and 4.x

Clients

Commit

g = =
I =
¥
| Replication |

Fig. 1: Master/Slave Replication

Transparent connections
O e =
| Replication |

Fig. 2: Multi-master Replication

10 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

Asynchronous and Synchronous Replication
In addition to the setup of how different nodes relate to one another, there is also the protocol for how they propagate
database transactions through the cluster.

* Synchronous Replication Uses the approach of eager replication. Nodes keep all replicas synchronized by
updating all replicas in a single transaction. In other words, when a transaction commits, all nodes have the
same value.

* Asynchronous Replication Uses the approach of lazy replication. The master database asynchronously propa-
gates replica updates to other nodes. After the master node propagates the replica, the transaction commits. In
other words, when a transaction commits, for at least a short time, some nodes hold different values.

Advantages of Synchronous Replication

In theory, there are several advantages that synchronous replication has over asynchronous replication. For instance:

 High Availability Synchronous replication provides highly available clusters and guarantees 24/7 service avail-
ability, given that:

— No data loss when nodes crash.
— Data replicas remain consistent.
— No complex, time-consuming failovers.

* Improved Performance Synchronous replications allows you to execute transactions on all nodes in the cluster
in parallel to each other, increasing performance.

¢ Causality across the Cluster Synchronous replication guarantees causality across the whole cluster. For exam-
ple, a SELECT query issued after a transaction always sees the effects of the transaction, even if it were executed
on another node.

Disadvantages of Synchronous Replication

Traditionally, eager replication protocols coordinate nodes one operation at a time. They use a two phase commit, or
distributed locking. A system with n number of nodes due to process o operations with a throughput of ¢ transactions
per second gives you m messages per second with:

m=nxoxt
What this means that any increase in the number of nodes leads to an exponential growth in the transaction response
times and in the probability of conflicts and deadlock rates.

For this reason, asynchronous replication remains the dominant replication protocol for database performance, scal-
ability and availability. Widely adopted open source databases, such as MySQL and PostgreSQL only provide asyn-
chronous replication solutions.

Solving the Issues in Synchronous Replication
There are several issues with the traditional approach to synchronous replication systems. Over the past few years,
researchers from around the world have begun to suggest alternative approaches to synchronous database replication.

In addition to theory, several prototype implementations have shown much promise. These are some of the most
important improvements that these studies have brought about:

* Group Communication This is a high-level abstraction that defines patterns for the communication of database
nodes. The implementation guarantees the consistency of replication data.

2.1. Database Replication 11

Galera Cluster Documentation, Releases 3.x and 4.x

* Write-sets This bundles database writes in a single write-set message. The implementation avoids the coordi-

nation of nodes one operation at a time.

« Database State Machine This processes read-only transactions locally on a database site. The implementation
updates transactions are first executed locally on a database site, on shallow copies, and then broadcast as a
read-set to the other database sites for certification and possibly commits.

* Transaction Reordering This reorders transactions before the database site commits and broadcasts them to
the other database sites. The implementation increases the number of transactions that successfully pass the

certification test.

The certification-based replication system that Galera Cluster uses is built on these approaches.

Related Documents

Certification Replication (page 12)
Database Replication (page 9)
Flow Control (page 23)

Isolation Levels (page 17)

Node Recovery (page 26)

Quorum Components (page 28)
Replicaiton Architecture (page 14)
State Transfers (page 20)
Streaming Replication (page 33)

The Library

2.2 Certification-Based Replication

Documentation (page 1)
Knowledge Base
Training
Training Courses
Tutorial Articles
Training Videos
FAQ

search

Home

Docs (page 1)
KB

Training

FAQ

Certification-based replication uses group communication and transaction ordering techniques to achieve synchronous
replication.

12

Chapter 2. Technical Description

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Transactions execute optimistically in a single node, or replica, and then at commit time, they run a coordinated
certification process to enforce global consistency. It achieves global coordination with the help of a broadcast service
that establishes a global total order among concurrent transactions.

Certification-Based Replication Requirements
It’s not possible to implement certification-based replication for all database systems. It requires certain features of
the database in order to work;

* Transactional Database: The database must be transactional. Specifically, it has to be able to rollback uncom-
mitted changes.

* Atomic Changes: Replication events must be able to change the database, atomically. All of a series of database
operations in a transaction must occur, else nothing occurs.

¢ Global Ordering: Replication events must be ordered globally. Specifically, they are applied on all instances
in the same order.

How Certification-Based Replication Works

The main idea in certification-based replication is that a transaction executes conventionally until it reaches the commit
point, assuming there is no conflict. This is called optimistic execution.

Client S Group Another
erver
UPDATE server
|
native
processing
- OK
COMMIT > replicate writeset _|
L receive with | global trx ID
certification certification
OK not OK OK not OK
< ke
- DEADLOCK _

Fig. 3: Certification Based Replication

When the client issues a COMMIT command, but before the actual commit occurs, all changes made to the database
by the transaction and primary keys of the changed rows, are collected into a write-set. The database then sends this
write-set to all of the other nodes.

2.2. Certification-Based Replication 13

Galera Cluster Documentation, Releases 3.x and 4.x

The write-set then undergoes a deterministic certification test, using the primary keys. This is done on each node in the
cluster, including the node that originates the write-set. It determines whether or not the node can apply the write-set.

If the certification test fails, the node drops the write-set and the cluster rolls back the original transaction. If the test
succeeds, though, the transaction commits and the write-set is applied to the rest of the cluster.

Certification-Based Replication in Galera Cluster

The implementation of certification-based replication in Galera Cluster depends on the global ordering of transactions.

Galera Cluster assigns each transaction a global ordinal sequence number, or seqgno, during replication. When a
transaction reaches the commit point, the node checks the sequence number against that of the last successful trans-
action. The interval between the two is the area of concern, given that transactions that occur within this interval
have not seen the effects of each other. All transactions in this interval are checked for primary key conflicts with the
transaction in question. The certification test fails if it detects a conflict.

The procedure is deterministic and all replica receive transactions in the same order. Thus, all nodes reach the same de-
cision about the outcome of the transaction. The node that started the transaction can then notify the client application
whether or not it has committed the transaction.

The Library
* Documentation (page 1)
* Knowledge Base
* Training
* Training Courses
* Tutorial Articles
* Training Videos
* FAQ
* search
* Home
e Docs (page 1)
* KB
¢ Training

« FAQ

2.3 Replication API

Synchronous replication systems generally use eager replication. Nodes in a cluster will synchronize with all of the
other nodes by updating the replicas through a single transaction. This means that when a transaction commits, all of
the nodes will have the same value. This process takes place using write-set replication through group communication.

The internal architecture of Galera Cluster revolves around four components:

¢ Database Management System (DBMS): The database server that runs on an individual node. Galera Cluster
can use MySQL, MariaDB or Percona XtraDB.

« wsrep API: This is the interface to the database server and it’s the replication provider. It consists of two main
elements:

14 Chapter 2. Technical Description

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Replication API

wsrep API

Fig. 4: Replication API

2.3. Replication API

15

Galera Cluster Documentation, Releases 3.x and 4.x

» wsrep Hooks: This integrates with the database server engine for write-set replication.
* dlopen(): This function makes the wsrep provider available to the wsrep hooks.

* Galera Replication Plugin: This plugin enables write-set replication service functionality.

wsrep API
The wsrep API is a generic replication plugin interface for databases. It defines a set of application callbacks and
replication plugin calls.

The wsrep API uses a replication model that considers the database server to have a state. That state refers to the
contents of the database. When a database is in use and clients modify the database content, its state is changed. The
wsrep API represents changes in the database state as a series of atomic changes, or transactions.

In a database cluster, all of the nodes always have the same state. They synchronize with each other by replicating and
applying state changes in the same serial order.

From a more technical perspective, Galera Cluster handles state changes in the following way:
* On one node in the cluster, a state change occurs in the database.
¢ In the database, the wsrep hooks translate the changes to the write-set.
* dlopen () then makes the wsrep provider functions available to the wsrep hooks.
* The Galera Replication plugin handles write-set certification and replication to the cluster.

For each node in the cluster, the application process occurs by high-priority transactions.
Global Transaction ID
In order to keep the state identical across the cluster, the wsrep API uses a Global Transaction ID, or GTID. This

allows it to identify state changes and to identify the current state in relation to the last state change. Below is an
example of a GTID:

45eec521-2£34-11e0-0800-2a360500826b:94530586304

The Global Transaction ID consists of the following components:
« State UUID This is a unique identifier for the state and the sequence of changes it undergoes.

* Ordinal Sequence Number: The seqno is a 64-bit signed integer used to denote the position of the change in
the sequence.

The Global Transaction ID allows you to compare the application state and establish the order of state changes. You
can use it to determine whether or not a change was applied and whether the change is applicable to a given state.

Galera Replication Plugin
The Galera Replication Plugin implements the wsrep API. It operates as the wsrep Provider. From a more technical
perspective, the Galera Replication Plugin consists of the following components:

* Certification Layer: This layer prepares the write-sets and performs the certification checks on them, ensuring
that they can be applied.

* Replication Layer: This layer manages the replication protocol and provides the total ordering capability.

¢ Group Communication Framework: This layer provides a plugin architecture for the various group commu-
nication systems that connect to Galera Cluster.

16 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

Group Communication Plugins

The Group Communication Framework provides a plugin architecture for the various gcomm systems.

Galera Cluster is built on top of a proprietary group communication system layer, which implements a virtual syn-
chrony QOS (Quality of Service). Virtual synchrony unifies the data delivery and cluster membership services, pro-
viding clear formalism for message delivery semantics.

While virtual synchrony guarantees consistency, it does not guarantee temporal synchrony, which is necessary for
smooth multi-master operations. To address this, Galera Cluster implements its own runtime-configurable temporal
flow control. Flow control keeps nodes synchronized to a fraction of a second.

Group Communication Framework also provides a total ordering of messages from multiple sources. It uses this to
generate Global Transaction ID’s in a multi-master cluster.

At the transport level, Galera Cluster is a symmetric undirected graph. All database nodes connect to each other over
a TCP (Transmission Control Protocol) connection. By default, TCP is used for both message replication and the
cluster membership services. However, you can also use UDP (User Datagram Protocol) multicast for replication in a
LAN (Local Area Network).

The Library
* Documentation (page 1)
* Knowledge Base
* Training
* Training Courses
* Tutorial Articles
* Training Videos
* FAQ
* search
Related Documents
* READ-COMMITTED (page 18)
* READ-UNCOMMITTED (page 18)
* REPEATABLE-READ (page 18)
» SERIALIZABLE (page 19)
* Home
* Docs (page 1)
* KB
* Training

« FAQ

2.4 Isolation Levels

In a database system, concurrent transactions are processed in “isolation” from each other. The level of isolation
determines how transactions can affect each other.

2.4. Isolation Levels 17

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

Intra-Node vs. Inter-Node Isolation in Galera Cluster

Before going into details about possible isolation levels which can be set for a client session in Galera Cluster it is
important to make a distinction between single node and global cluster transaction isolation. Individual cluster nodes
can provide any isolation level 7o the extent it is supported by MySQL/InnoDB. However isolation level between the
nodes in the cluster is affected by replication protocol, so transactions issued on different nodes may not be isolated
identically to transactions issued on the same node.

Overall isolation levels that are supported cluster-wide are
* READ-UNCOMMITTED (page 18)
* READ-COMMITTED (page 18)
* REPFATABLE-READ (page 18)

For transactions issued on different nodes, isolation is also strengthened by the “first committer wins” rule, which
eliminates the “lost update anomaly” inherent to these levels, whereas for transactions issued on the same node this
rule does not hold (as per original MySQL/InnoDB behavior). This makes for different outcomes depending on
transaction origin (transaction issued on the same node may succeed, whereas the same transaction issued on another
node would fail), but in either case it is no weaker than that isolation level on a standalone MySQL/InnoDB.

SERIALIZABLE (page 19) isolation level is honored only between transactions issued on the same node and thus
should be avoided.

Data consistency between the nodes is always guaranteed regardless of the isolation level chosen by the client. How-
ever the client logic may break if it relies on an isolation level which is not not supported in the given configuration.

Understanding Isolation Levels

Warning: When using Galera Cluster in master-slave mode, all four levels are available to you, to the extend that
MySQL supports it. In multi-master mode, however, you can only use the REPEATABLE-READ level.

READ-UNCOMMITTED

Here transactions can see changes to data made by other transactions that are not yet committed.

In other words, transactions can read data that eventually may not exist, given that other transactions can always
rollback the changes without commit. This is known as a dirty read. Effectively, READ-UNCOMMITTED has no real
isolation at all.

READ-COMMITTED
Here dirty reads are not possible. Uncommitted changes remain invisible to other transactions until the transaction
commits.

However, at this isolation level SELECT queries use their own snapshots of committed data, that is data committed be-
fore the SELECT query executed. As a result, SELECT queries, when run multiple times within the same transaction,
can return different result sets. This is called a non-repeatable read.

REPEATABLE-READ

Here non-repeatable reads are not possible. Snapshots taken for the SELECT query are taken the first time the SELECT
query runs during the transaction.

18 Chapter 2. Technical Description

Galera Cluster Documentation, Releases 3.x and 4.x

The snapshot remains in use throughout the entire transaction for the SELECT query. It always returns the same result
set. This level does not take into account changes to data made by other transactions, regardless of whether or not they
have been committed. In this way, reads remain repeatable.

SERIALIZABLE
Here all records accessed within a transaction are locked. The resource locks in a way that also prevents you from
appending records to the table the transaction operates upon.

SERIALIZABLE prevents a phenomenon known as a phantom read. Phantom reads occur when, within a transaction,
two identical queries execute, and the rows the second query returns differ from the first.

Related Documents
* READ-COMMITTED (page 18)
* READ-UNCOMMITTED (page 18)
o REPEATABLE-READ (page 18)
e SERIALIZABLE (page 19)
The Library
* Documentation (page 1)
* Knowledge Base
* Training
* Training Courses
* Tutorial Articles
* Training Videos
* FAQ
* search

Related Documents

Galera Parameters (page 268)

gcache.dir (page 283)

gcache.recover (page 285)

Incremental St. Transfr. (page 20)

State Snapshot Transfers (page 68)

State Snap. Transfr. (page 20)

e Home

Docs (page 1)
* KB

Training

. FAQ

2.4. Isolation Levels 19

https://galeracluster.com

Galera Cluster Documentation, Releases 3.x and 4.x

2.5 State Transfers

The process of replicating data from the cluster to the individual node, bringing the node into sync with the cluster, is
known as provisioning. There are two methods available in Galera Cluster to provision nodes:

e State Snapshot Transfers (SST) (page 20) Where a snapshot of the entire node state transfers.

 Incremental State Transfers (IST) (page 20) Where only the missing transactions transfer.

State Snapshot Transfer (SST)

In a State Snapshot Transfer (SST), the cluster provisions nodes by transferring a full data copy from one node to
another. When a new node joins the cluster, the new node initiates a State Snapshot Transfer to synchronize its data
with a node that is already part of the cluster.

You can choose from two conceptually different approaches in Galera Cluster to transfer a state from one database to
another:

* Logical This method uses mysgldump. It requires that you fully initialize the receiving server and ready it to
accept connections before the transfer.

This is a blocking method. The Donor Node becomes READ-ONLY for the duration of the transfer. The State
Snapshot Transfer applies the FLUSH TABLES WITH READ LOCK command on the donor node.

mysgldump is the slowest method for State Snapshot Transfers. This can be an issue in a loaded cluster.

 Physical This method uses rsync, rsync_wan, xt rabackup and other methods and copies the data files
directly from server to server. It requires that you initialize the receiving server after the transfer.

This method is faster than mysgldump, but they have certain limitations. You can only use them on server
startup. The receiving server requires very similar configurations to the donor, (for example, both servers must
use the same innodb_file_per_table value).

Some of these methods, such as xt rabackup can be made non-blocking on the donor. They are supported
through a scriptable SST interface.

For more information on the particular methods available for State Snapshot Transfers, see the State Snapshot Transfers
(page 68).

You can set which State Snapshot Transfer method a node uses from the confirmation file. For example:

wsrep_sst_method=rsync_wan

Incremental State Transfer (IST)
In an Incremental State Transfer (IST), the cluster provisions a node by identifying the missing transactions on the
joiner and sends them only, instead of the entire state.
This provisioning method is only available under certain conditions:
* Where the Joiner Node state UUID is the same as that of the group.
* Where all missing write-sets are available in the donor’s write-set cache.

When these conditions are met, the donor node transfers the missing transactions alone, replaying them in order until
the joiner catches up with the cluster.

For example, say that you have a node in your cluster that falls behind the cluster. This node carries a node state that
reads:

20 Chapter 2. Technical Description

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table

Galera Cluster Documentation, Releases 3.x and 4.x

’5a76ef62—30ec—llel—OSOO—dba504cf2aab:197222

Meanwhile, the current node state on the cluster reads:

’5a76ef62—30ec—llel—OSOO—dba504cf2aab:201913

The donor node on the cluster receives the state transfer request from the joiner node. It checks its write-set cache for
the sequence number 19722 3. If that seqno is not available in the write-set cache, a State Snapshot Transfer initiates.
If that seqno is available in the write-set cache, the donor node sends the commits from 197223 through to 201913
to the joiner, instead of the full state.

The advantage of Incremental State Transfers is that they can dramatically speed up the reemerging of a node to the
cluster. Additionally, the process is non-blocking on the donor.

Note: The most important parameter for Incremental State Transfers is gcache. size on the donor node. This
controls how much space you allocate in system memory for caching write-sets. The more space available the more
write-sets you can store. The more write-sets you can store the wider the seqno gaps you can close through Incremental
State Transfers.

On the other hand, if the write-set cache is much larger than the size of your database state, Incremental State Transfers
become less efficient than sending a state snapshot.

Write-set Cache (GCache)

Galera Cluster stores write-sets in a special cache called the Write-set Cache, or GCache. GCache cache is a memory
allocator for write-sets. Its primary purpose is to minimize the write-set footprint on the RAM (Random Access
Memory). Galera Cluster improves upon this through the offload write-set storage to disk