
October 2016

1

October 2016

2

 Contents
1	 Introduction	..	3	
2	 Performance	Study:	What,	Why,	How?	...	4	

2.1	 China	Mobile	1000	Node	Production	Cluster	..	4	
2.2	 Low	Overhead	Instrumentation	..	4	
2.3	 Virtual	Machine	Launch	Latency	...	4	
2.4	 OpenStack	nova	Architecture	..	5	
2.5	 Experiments	...	5	

3	 Performance	Test	Insights	...	6	
3.1	 Execution	Times	under	Varying	Request	Pressure	..	6	
3.2	 Execution	Times	under	Varying	Schedulers	...	7	
3.3	 Launch	Errors	–	Number	and	Nature	...	8	
3.4	 Configuration	Fixes	..	9	
3.5	 Service	Level	Profiling	..	11	
3.6	 Analysis	..	13	

4	 Conclusions	and	Future	Work	...	14	

	

Figures

Figure	2-1	 Architecture	..	5	
Figure	3-1	 Send	5	~	2000	concurrent	requests	to	530	compute	nodes	6	
Figure	3-2	 Varying	scheduler	settings	...	7	
Figure	3-3	 Trace	failure	requests	...	8	
Figure	3-4	 Service	quality	improvements,	before	and	after	..	10	
Figure	3-5	 Controller,	keystone,	RabbitMQ	and	MySQL	utilization	as	a	function	of	time	12	
	
TABLES	
Table	1:		Errors	and	Categories……………………………………………………………………………………………….….9	
Table	2:		OpenStack	components’	peak	consumption	of	CPU,	memory	&	network	resources…..11	

October 2016

3

1 INTRODUCTION

Developers,	architects	and	operators	can	face	challenges	when	analyzing	OpenStack*	cloud	software	
performance.	Those	who	develop,	deploy	and	operate	cloud	infrastructures	must	ensure	their	clouds	
meet	service-level	agreements	(SLAs).	Developers	want	to	quickly	locate	and	resolve	design	and	
implementation	issues	that	limit	cloud	scaling.	Deployers	want	to	set	up	services,	networks,	and	
nodes	to	meet	scale	needs.	Operators	also	want	to	establish	the	real	capacity	of	their	cloud	under	
heavy	workload	conditions.	Organizations	considering	deploying	a	private	cloud	need	data	to	make	
educated	decisions	about	whether	OpenStack	solutions	can	meet	their	needs.		

OpenStack	black-box	testing	often	uses	the	rally	[1]	project,	but	for	fine	grained	analysis,	constant	
polling	is	required	which	would	introduce	an	artificial	load	on	the	system	and	muddy	the	analysis.	An	
alternative	is	to	simulate	the	test	system.		While	attractive	in	needing	less	hardware,	it	however	
requires	accurate	modelling	of	inter-component	interactions	and	the	time/resources	spent	in	each	
component.		For	this	case	study,	we	were	fortunate	to	gain	access	to	China	Mobile’s	production	
environment	before	it	went	live,	which	allowed	us	to	test	on	real	hardware.		We	then	introduced	
limited	extra	logging	to	minimize	any	artificial	system	load.	

This	paper	shares	lessons	learned	from	a	careful,	component	level	analysis	of	China	Mobile’s	1000-
node	OpenStack	cloud.		We	uncovered	three	major	issues	in	the	course	of	this	study,	all	addressed	
through	OpenStack	configuration	changes.		The	result:		a	more	stable	and	performant	China	Mobile	
OpenStack	cloud	and	insights	into	scale	bottlenecks	and	areas	for	future	work.		

October 2016

4

2 Performance Study – What, Why and How?

2.1 China Mobile 1000-Node Production Cluster
China	Mobile’s	1000	node	production	cloud	runs	OpenStack	Newton	RC2	(13.0.0.rc2).		The	cloud	
includes	530	compute	hosts,	five	controller	nodes,	a	three-node	keystone	cluster	for	identity	and	
authentication	services,	a	three-node	active-active	Galera	Cluster	for	MySQL	database	services,	a	
three-node	RabbitMQ	cluster	for	inter-component	messaging	support,	and	the	remaining	nodes	set-
up	for	storage	and	network	services.		Note:	because	the	cloud	runs	on	multi-core	machines,	multi-
threaded	processes	can	consume	more	than	100%	of	CPU.	
Server	configuration:	2	x	Intel®	Xeon®	Processor	E5-2680	v3	(30M	Cache,	2.50	GHz),	128GB	RAM	(8	x	
16GB	HP®	DDR4),	3TB	Disk.		
	
	

2.2 Low Overhead Instrumentation
Given	the	“slated-for-production”	status	of	the	cluster	under	test,	we	introduced	additional	logging,	
taking	care	to	minimize	overhead.	That	enabled	us	to	further	analyze	the	logs	as	a	post	processing	
step,	without	introducing	latencies	during	execution.	

Python-based	OpenStack	code	lends	itself	to	monkey-patching	[3],	enabling	the	easy	introduction	and	
elimination	of	monitoring	instrumentation.	

Even	though	Network	Time	Protocol	was	used	to	synchronize	the	nodes	in	the	distributed	cluster,	its	
size	made	the	synchronization	precision	inadequate	to	study	fine-grained	timing.	To	resolve	the	
issue,	we	devised	a	method	to	adjust	timestamps	using	causal	constraint	heuristics.

2.3 Virtual Machine Launch Latency
We	focused	on	virtual	machine	(VM)	launch	latency	as	the	most	important	feature	of	an	
Infrastructure-as-a-Service	(IaaS)	platform.	Launch	latency	also	involves	most	core	OpenStack	
services	and	their	components.	Our	work	seeks	to	quantify	performance	as	a	function	of	the	number	
of	concurrent	requests.		

October 2016

5

2.4 OpenStack Nova Architecture
To	facilitate	future	discussions,	we	briefly	delve	into	the	OpenStack	nova	architecture	which	handles	
VM	provisioning.	Incoming	requests	first	arrive	at	the	nova-api	service,	which	in	turn	hands	off	the	
task	to	the	nova-conductor	service,	a	layer	of	software	that	envelopes	the	database.	The	nova-
conductor	invokes	the	nova-scheduler,	which	attempts	to	identify	a	hospitable	host	for	the	workload.	
Once	it	identifies	a	host,	the	scheduler	transfers	control	to	the	nova-compute	service	running	on	the	
selected	host	to	launch	the	workload.	The	orange	state	transitions	in	Figure	2-1	(below)	represent	
error	states	that	might	stem	from	incorrectly	formulated	requests,	input	constraints	that	cannot	be	
satisfied	and/or	a	lack	of	resources:
Figure 2-1: Architecture

2.5 Experiments
We	study	performance	under	various	load	conditions,	in	particular	handling	concurrent	VM	launch	
requests	ranging	from	five	to	2000.	

We	further	explore	performance	under	the	same	load	conditions	but	using	different	types	and	
numbers	of	nova-scheduler	services,	to	handle	the	volume	of	requests	through	horizontal	scaling.	

Using	Zabbix	[5],	an	open	source	monitoring	tool,	we	study	system	resource	consumption	across	the	
various	cloud	components	with	respect	to	time	once	requests	enter	the	system.	

Most	valuable	of	all,	we	analyzed	the	logs	over	four	separate	runs,	each	a	20-minute	time	window	
with	2000	concurrent	requests.		We	collected	data	on	how	many	requests	completed	successfully,	
how	many	failed,	and	in	what	manner.	

In	the	next	section	we	share	our	findings.		

October 2016

6

3 Performance Test Insights

3.1 Execution Times under Varying Request Pressure
Figure	3-1	shows	nova	component-level	costs	when	the	cloud	handles	five	to	2000	concurrent	launch	
requests.	Comparing	our	results	to	those	of	an	earlier	study	[2]	with	simulated	compute	hosts,	we	
found	major	differences	with	respect	to	the	cost	in	compute	services	and	the	scheduler	saturation	
point.	Real	compute	nodes—i.e.,	real	hypervisors—take	significantly	longer	to	spawn	VMs	than	we	
assumed,	driving	up	the	compute-host	time	component.	Observing	best	practices	for	production	
environments,	the	message	queue	and	data	base	services	were	deployed	in	clustered	configurations	
to	deliver	the	required	stability	and	performance.	
Note	that	the	scheduler	service	time	increases	with	load,	but	plateaus	around	800	concurrent	
requests.	As	the	number	of	concurrent	requests	rises	beyond	800,	saturating	the	scheduler,	the	cost	
of	message-handling	increases.	While	the	nova-api	service	time	rises	with	load,	it	never	consumes	
more	time	than	the	scheduler	component.	The	cloud	succeeds	in	handling	1.78	requests	per	second.	

	
Figure 3-1: Send 5 ~ 2000 concurrent requests to 530 compute nodes

October 2016

7

3.2 Execution Times under Varying Schedulers
Next,	we	explore	the	effect	of	five	scheduler	instances,	versus	10	scheduler	instances,	versus	five	
instances	of	a	new	caching	scheduler.	The	caching	scheduler	eliminates	the	need	to	visit	the	
database	to	retrieve	resource	usage	updates	prior	to	scheduling.		

The	graphs	in	Figure	3-2	below	support	our	hypothesis:	using	10	scheduler	instances	instead	of	five	
roughly	halves	the	time	to	tackle	launch	requests.	As	one	might	expect,	using	a	caching	scheduler	
radically	shrinks	the	time	for	a	host	to	schedule	a	workload.	But	introducing	more	scheduler	
instances	impacts	the	nova-api	component	by	causing	more	re-tries	stemming	from	using	stale	
resource	views.		

The	graph’s	red	regions	indicate	failed	schedule	attempts	in	nova-api,	and	the	dark	grey	regions	
indicate	the	time	spent	in	re-tries—puzzling,	given	the	availability	of	physical	resources	on	the	
compute	hosts.	With	five	filter	schedulers,	the	failure	rate	reached	25.7	percent	and	the	retry	rate	
reached	29.0	percent.	Further,	the	time	to	spawn	VM	images	fluctuates	more	with	a	larger	number	
of	schedulers—sometimes	swinging	from	6.45	seconds	to	354	seconds	(nearly	six	minutes),	which	
begs	further	investigation.			

Figure 3-2: Varying scheduler settings

October 2016

8

3.3 Launch Errors – Number and Nature
To	better	understand	the	launch	process	and	the	nature	of	errors,	we	analyzed	detailed	logs	
obtained	from	four	runs	of	2000	requests	each.	Of	the	8000	total	requests,	7953	were	successfully	
tracked,	with	4646	successfully	completing,	yielding	a	success	rate	of	only	58.45	percent.	

First,	to	obtain	the	necessary	time	synchronization	precision,	we	adjusted	log	timestamps	using	
causality	heuristics.	Then	we	developed	a	detailed	state	machine	using	log	events	such	as	enter-
nova-api,	exit-nova-api,	and	others.	We	next	traced	each	event	in	this	state	space	and	classified	the	
errors	using	their	message	strings.	

	

Figure 3-3: Trace failure requests

	

Figure	3-3	highlights	a	failed	request	in	a	2000	request	test	run.	The	request-ID,	“p1966”	failed	on	
compute	node	“YW-SV153”	with	the	error	logged	as	“loss	of	database	connection.”	The	log	files	
revealed	that	it	occurred	when	the	compute	node	tried	to	update	its	resource	usage	through	nova-
conductor.	Further	analysis	revealed	that	nova-conductor	ran	into	a	database	deadlock	issue	when	it	
ran	the	“compute	node	update”	operation.	The	logs	show	that	after	the	request	is	received	by	the	
compute	node,	it	takes	approximately	30	seconds	before	the	database	operation	fails,	characteristic	
of	load	related	failure.	

	
	

October 2016

9

The	following	table	shows	each	error	and	its	category	and	sub-categories	based	on	the	error	message	
string.	The	state	machine-based	analysis	helped	eliminate	duplicate	and	irrelevant	error	messages.	
	
			
Table 1: Errors and Categories

Component Error Message Count

API This result object does not return rows. 2284

API Not authorized for image 845

API HTTP Internal Server Error (HTTP 500) 133

API Unknown 8

Compute Node neutron error creating port on network, retry 1222

Compute Node Unknown, retry 12

Compute Node Build of instance … Failure prepping block device 5

Compute Node Build of instance … Failed to allocate the network(s), not
rescheduling 1

Compute Node Remote error: DB Error This connection is closed 1

3.3.1 TOP THREE ERRORS

• Database	deadlocks:	Deadlocks	caused	the	majority	of	database	failures	reported	by	the	nova-
api	service	and	occurred	when	running	the	“quota	reserve”	operation.	After	reaching	the	
deadlock	retry	limit,	the	request	failed	with	the	error	message	“no	rows	returned.”		

• neutron	port	creation	failure:	A	substantial	portion	of	the	retries	stemmed	from	the	OpenStack	
neutron	service	failing	to	allocate	a	port	for	a	VM.	This	issue	caused	at	least	1222	compute-node	
retries	and	one	compute-node	failure.		

• keystone	authentication	failure:	Every	stage	in	the	OpenStack	service	pipeline	attempts	to	
authenticate	the	request	with	the	OpenStack	identity	service,	keystone.	Under	heavy	load,	
authentication	often	times	out.	Of	the	8000	total	requests,	this	accounted	for	47	failures	to	
authenticate	due	to	time-outs	and	ultimately	caused	845	image	access	errors	and	133	HTTP	
internal	server	errors.	
	

	

October 2016

10

3.4 Configuration Fixes
Further	investigation	revealed	that	the	three	major	types	of	errors	stemmed	from	misconfigurations	and	
improper	deployment	decisions—not	from	software	bugs:		

• Galera	Cluster	Configuration—Misconfiguration	of	the	Galera	Cluster	causes	the	database	deadlocks.	
The	original	configuration	used	cluster-wide	optimistic	locking,	resulting	in	failure	and	roll-back	of	the	
distributed	quota	reservations	in	the	nova-api	services,	particularly	as	the	launch	request	pressure	
increased.	Using	a	single-node	write	strategy	instead	of	allowing	writes	to	all	the	Galera	nodes	
resolved	the	issue.		

• Using	Fernet	tokens	instead	of	PKI	tokens	in	keystone—Fernet	tokens,	compared	to	PKI	tokens,	
perform	better	because	of	their	smaller	payload	and	non-persistent	implementation.	Moving	to	
Fernet	tokens	resolved	the	authentication	failures.	

• Setting	“scheduler	host	subset	size”	[4]	to	more	than	the	number	of	schedulers	decreases	the	chances	
of	conflict	and	spreads	the	workload	among	compute	nodes.	

• Setting	“rpc	response	timeout”	to	a	longer	interval	allows	the	nova-conductor	to	wait	longer	for	the	
RPC	response	from	the	nova-schedulers	in	a	large	cluster.		

• Increasing	“rpc	conn	pool	size”	allows	the	nova-scheduler	service	to	concurrently	accept	more	
requests.	

• Increasing	“max	pool	size”	and	“max	overflow”	in	the	nova-api	database	and	in	the	database	
configuration	groups	(given	that	the	scheduler	service	directly	connects	to	the	database)	allows	a	
larger	number	of	simultaneous	connections	to	databases.		
	

Figure 3-4: Service quality improvements, before and after

Figure	3-4	illustrates	the	overall	improvements	after	troubleshooting	and	tuning.	Resolving	the	three	
major	root	causes	eliminated	all	API	failures	(in	red)	and	unexpected	retries	(in	grey).	More	randomly	
distributing	workloads	improved	stability,	including	reducing	the	probability	of	port	allocation	time-out.	
Time	spent	in	nova	scheduling—thanks	to	switching	to	a	single-node	write	strategy	in	the	Galera	
Cluster—resulted	in	fewer	time-outs,	fewer	rollbacks,	and	fewer	retries.	

• The	Failure	rate	in	nova-api	decreased	from	25.7	percent	to	0	percent.	

• The	Retry	rate	decreased	from	29.0	percent	to	0.83	percent	

• The	Overall	Output	increased	from	1.31	requests/second	to	4.35	requests/second	

October 2016

11

3.5 Service Level Profiling
For	service	level	profiling	we	used	Zabbix,	an	open	source	monitoring	tool	with	a	variety	of	plugins	to	
monitor	software	applications	such	as	MySQL	database	and	RabbitMQ,	in	addition	to	being	able	to	
monitor	system-level	activities	of	individual	processes.	We	set	up	monitoring	agents	on	the	servers	
hosting	the	OpenStack	controllers,	keystone	(identity),	the	database,	and	the	message	queue.	We	
examined	usage	under	various	loads,	namely	idle,	800,	and	2000	concurrent	requests	in	our	1000	
node	cluster.	Our	purpose	in	sharing	this	data	is	to	illustrate	what	one	might	anticipate	in	terms	of	
resource	consumption	in	a	1000	node	cluster,	in	order	to	guide	hardware	sizing	efforts.	

Table 2: OpenStack components’ peak consumption of CPU, Memory, Network resources

Item
Idle

(min value)
800 requests
(peak value)

2000 requests
(peak value)

Nova CPU usage (nova-api) 58% 172% 219%

Nova CPU usage (nova-scheduler) 22% 95% 95%

Nova CPU usage (nova-conductor) 81% 270% 329%

Nova Memory usage (nova-api) 60GiB

Nova Memory usage (nova-scheduler) 1.5GiB

Nova Memory usage (nova-conductor) 16GiB

Nova Incoming network (controller node) 527Kbps 35Mbps 41Mbps

Nova Outgoing network (controller node) 301Kbps 3.1Mbps 5.2Mbps

Keystone CPU usage 0% 169% 202%

Keystone Memory usage 68GiB

Keystone Incoming network (controller node) 27Kbps 6.2Mbps 12Mbps

Keystone Outgoing network (controller node) 86Kbps 3.1Mbps 8.6Mbps

Database MySQL bytes received 250KBps 9.3MBps 6.9MBps

Database MySQL bytes sent 400KBps 33MBps 39MBps

Database MySQL queries rate 92qps 40Kqps 57Kqps

Database Incoming network 1.5Mbps 32Mbps 49Mbps

Database Outgoing network 2.5Mbps 180Mbps 222Mbps

Messaging RabbitMQ receive rate 19msgs/s 1.7Kmsgs/s 2.1Kmsgs/s

Messaging RabbitMQ deliver rate 32msgs/s 6.4Kmsgs/s 7.5Kmsgs/s

Messaging RabbitMQ file descriptors used 8.2K

Messaging RabbitMQ sockets used 8.1K

Messaging Incoming network 6.5Mbps 71Mbps 94Mbps

Messaging Outgoing network 11.9Mbps 125Mbps 179Mbps

October 2016

12

Figure 3-5: Controller, keystone, RabbitMQ and MySQL utilization as a function of time

Figure	3-5	shows	that	the	nova-api	and	keystone	services	consume	processing	resources	as	requests	
arrive	into	the	system.	As	nova-scheduler	resource	requirements	climb,	they	also	shift	further	to	the	
right	in	time.		In	addition,	nova-scheduler	directly	communicates	with	the	database	to	refresh	its	
resource	status	cache,	visible	as	a	matched	rise	in	database	processing	needs.	The	resource	usage	of	
nova-conductor	rises	only	during	the	deployment	phase	(peaking	at	270	percent),	and	thus	it	
matches	the	rise	of	resource	usage	on	the	nova-compute	nodes.	Database	resource	usage	remains	
high	in	the	deployment	phase	because	nova-conductor	keeps	it	busy	updating	the	compute	node	
records.	The	deliver-rate	and	receive-rate	of	RabbitMQ	start	to	rise	after	the	first	request	leaves	
nova-api,	and	they	peak	when	requests	go	to	the	compute	nodes.	The	cloud	ran	on	multi-core	
machines,	allowing	usage	to	exceed	100	percent.	Note	that	because	the	nova-scheduler	is	inherently	
single-threaded,	its	CPU	usage	cannot	exceed	100	percent.	

October 2016

13

3.6 Analysis
The	system	profiling	illustrates	varied	performance	footprints	of	the	nova	services:	

• nova-api	imposes	pressure	upon	keystone	and	MySQL	services	with	numerous	SQL	operations,	
indicating	a	high	degree	of	difficulty	for	performance	optimizations	due	to	complex	interactions	
with	other	services.	

• nova-scheduler	configured	with	the	filter	scheduler	driver	requires	outbound-intensive	MySQL	
operations,	and	it	cannot	leverage	multiple	CPU	cores.	We	began	investigating	a	caching	
scheduler	to	reduce	database	burden	and	speed	scheduling,	and	we	have	obtained	promising	
preliminary	results.		

• RabbitMQ	pressure:	The	decision	delivery	from	nova-conductor	to	compute	nodes	imposes	
pressure	upon	RabbitMQ	services,	which	seems	inevitable.		We	propose	investigating	a	lighter-
weight	messaging	protocol.	

• VM	provisioning	by	nova-compute	services	relies	on	nova-conductor	services	to	update	the	
database.	The	number	of	nova-compute	to	nova-conductor	services	should	match	to	avoid	
bottlenecks.		

	

Zhen	Yu	Shen	of	China	Mobile	gives	local	media	reporters	a	tour	of	one	of	several	multi-thousand	node,	
OpenStack	clusters.	

October 2016

14

4 Conclusions and Future Work

Our	lightweight	instrumentation	along	with	technique	for	obtaining	more	precise	time-
synchronization	enabled	tracking	of	every	VM	launch	request	in	nova.	By	analyzing	each	failure	and	
classifying	it,	we	identified	three	major	issues	and	addressed	them	through	configuration	changes—
obtaining	a	more	stable	and	performant	cloud.		
We	experimented	with	different	cloud	deployments	and	analyzed	their	merits.	We	confirmed	that	
the	filter	scheduler	creates	the	most	significant	bottleneck	in	a	large	OpenStack	cloud,	and	that	it	
stems	from	the	cache-refresh	design	that	imposes	heavy	pressure	on	the	database.	Switching	to	a	
caching	scheduler	relieves	database	pressure	but	also	carries	the	risk	of	operating	with	stale	resource	
views.	More	efficient	database	indexing	mechanisms	show	promise	as	a	way	to	reduce	database	
pressure	to	prune	the	list	of	hosts	before	reaching	out	to	the	database.		Alternatively,	updating	the	
schedulers	by	the	compute	nodes—on	any	resource	change—boosts	performance	by	eliminating	the	
calls	to	update	the	scheduler	database	cached	resource	view	on	each	schedule	request.		For	those	
willing	to	relax	the	need	to	find	the	optimal	host	for	scheduling,	using	cells,	and/or	partitioning	the	
hosts	into	subsets	can	speed	scheduling,	especially	with	known	short-running	workloads.		Other	
areas	to	explore	include	a	lighter	messaging	component.	
Our	system-level	profiling	of	OpenStack	services	showed	patterns	and	exposed	potential	bottlenecks,	
and	offers	areas	to	explore	for	redesign	and	improvement.	
	
References:	
[1]		 https://wiki.openstack.org/wiki/Rally		
[2]		 https://www.openstack.org/assets/presentation-media/7129-Dive-into-nova-scheduler-

performance-summit.pdf		
[3]		 http://en.wikipedia.org/wiki/Monkey_patch	
[4]		 http://docs.openstack.org/mitaka/config-reference/compute/scheduler.html		
[5]		 http://www.zabbix.com/		
	
Acknowledgements:	
Hao	Li	of	China	Mobile	helped	prepare	the	experiments.	
Qing	Wang	and	Jian-Feng	Ding	of	Intel	organized	the	collaboration	with	China	Mobile.	
Maggie	Liang	of	Intel	developed	the	case	study	with	Dan	Fineberg	editing	for	publication.	

October 2016

15

5 Legal Notices

Intel	technologies’	features	and	benefits	depend	on	system	configuration	and	may	require	enabled	
hardware,	software	or	service	activation.	Performance	varies	depending	on	system	configuration.	No	
computer	system	can	be	absolutely	secure.	Check	with	your	system	manufacturer	or	retailer	or	learn	
more	at	[intel.com].	

Software	and	workloads	used	in	performance	tests	may	have	been	optimized	for	performance	only	on	
Intel	microprocessors.	Performance	tests,	such	as	SYSmark	and	MobileMark,	are	measured	using	specific	
computer	systems,	components,	software,	operations	and	functions.	Any	change	to	any	of	those	factors	
may	cause	the	results	to	vary.	You	should	consult	other	information	and	performance	tests	to	assist	you	
in	fully	evaluating	your	contemplated	purchases,	including	the	performance	of	that	product	when	
combined	with	other	products.	

Testing	methods	and	tools:	

• Performance	studied	under	varying	load	conditions,	handling	concurrent	VM	requests	ranging	
from	five	to	2000.	

• Performance	also	explored	under	the	same	load	conditions	but	using	different	types	and	numbers	
of	nova-scheduler	services	to	handle	the	volume	of	requests	through	horizontal	scaling.	

• System	resource	consumption	studied	across	the	various	cloud	components	using	Zabbix	[5],	an	
open	source	monitoring	tool.	

• Log	analysis	over	a	20-minute	time	window	with	2000	concurrent	requests.		Data	collected	on	
how	requests	completed	successfully,	failed,	and	in	what	manner.	

Configuration:		

• The	1000-node	experiments	were	carried	out	by	the	authors	at	China	Mobile’s	datacenter.		
o The	1000	node	cloud	runs	OpenStack	Newton	RC2	(13.0.0.rc2).			
o It	includes	530	compute	hosts,	five	controller	nodes,	a	three-node	keystone	cluster	for	

identity	and	authentication	services,	a	three-node	Galera	Cluster	for	MySQL	database	
services,	a	three-node	RabbitMQ	cluster	for	inter-component	messaging	support,	and	the	
remaining	nodes	set-up	for	storage	and	network	services.		

• Servers:		
o CPUs—2	x	Intel®	Xeon®	Processor	E5-2680	v3	(30M	Cache,	2.50	GHz)	
o Memory—128GB	RAM	(8	x	16GB	HP®	DDR4)	
o Storage—3TB	Local	disk	

	
For	more	information	on	performance	of	Intel	technologies,	go	to	www.intel.com/performance.	
Intel	and	the	Intel	logo	are	trademarks	of	Intel	Corporation	in	the	U.S.	and/or	other	countries.	
*Other	names	and	brands	may	be	claimed	as	the	property	of	others.	
©	2016	Intel	Corporation	

